RationalCanonicalForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

RationalCanonicalForm

  

construct four rational canonical forms of a rational function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

RationalCanonicalForm[1](F, n)

RationalCanonicalForm[2](F, n)

RationalCanonicalForm[3](F, n)

RationalCanonicalForm[4](F, n)

Parameters

F

-

rational function of n

n

-

variable

Description

• 

Let F be a rational function of n over a field K of characteristic 0. The RationalCanonicalForm[i](F,n) calling sequence constructs the ith rational canonical forms for F, i=1,2,3,4.

  

If the RationalCanonicalForm command is called without an index, the first rational canonical form is constructed.

• 

The output is a sequence of 5 elements z,r,s,u,v, called RNFF, where z is an element of K, and r,s,u,v are monic polynomials over K such that:

1. 

F=zrEuvvsu.

2. 

gcdr,Eks=1 for all integers k.

3. 

gcdr,u·Ev=1, gcds,Eu·v=1.

  

Note: E is the automorphism of K(n) defined by EFn=Fn+1.

• 

The five-tuple z,r,s,u,v that satisfies the three conditions is a strict rational normal form for F. The rational functions zrs and uv are called the kernel and the shell of an RNFF, respectively.

• 

Let φ=z,r,s,u,v be any RNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if Fn=pnEGnqnGn where p, q are polynomials in n, and G is a rational function of n, then degreerdegreep and degreesdegreeq.

  

If i=1 then degreev is minimal.

  

If i=2 then degreeu is minimal.

  

If i=3 then degreeu+degreev is minimal, and under this condition, degreev is minimal.

  

If i=4 then degreeu+degreev is minimal, and under this condition, degreeu is minimal.

Examples

withSumToolsHypergeometric:

νnn+2n4+sqrt2n3+sqrt2n+2+sqrt2n+11+sqrt2

νnn+2n4+2n3+2n+2+2n+11+2

(1)

den3n22n+6n+12n1+sqrt2n+1+sqrt2

den3n22n+6n+12n1+2n+1+2

(2)

Fνde

Fnn+2n4+2n3+2n+2+2n+11+2n3n22n+6n+12n1+2n+1+2

(3)

z1,r1,s1,u1,v1RationalCanonicalForm1F,n

z1,r1,s1,u1,v11,n4+2n3+2,n3n+6n+12,n+1+22n12n22n+1nn+10+2n+9+2n+8+2n+7+2n+6+2n+5+2n+4+2n+3+2n+2+2n+2n1+2,1

(4)

z2,r2,s2,u2,v2RationalCanonicalForm2F,n

z2,r2,s2,u2,v21,n+2+2n+11+2,n3n22,1,n2+22n3+22n+52n+42n+32n+22n+2n1+2n4+2n+11n+10n+9n+8n+7n+6n+1n

(5)

z3,r3,s3,u3,v3RationalCanonicalForm3F,n

z3,r3,s3,u3,v31,n4+2n+11+2,n3n+6n+12,n+1+2n12n22n+1n,n2+2n3+2

(6)

z4,r4,s4,u4,v4RationalCanonicalForm4F,n

z4,r4,s4,u4,v41,n4+2n+11+2,n3n2n+12,n1n2n+1+2,n+5n+4n+3n+2n2+2n3+2

(7)

Check the result from RationalCanonicalForm[1].

Condition 1 is satisfied.

evalbF=normalz1r1s1subsn=n+1,u1v1u1v1

true

(8)

Condition 2 is satisfied.

LREtoolsdispersionr1,s1,n,LREtoolsdispersions1,r1,n

FAIL,FAIL

(9)

Condition 3 is satisfied.

gcdr1,u1subsn=n+1,v1,gcds1,subsn=n+1,u1v1

1,1

(10)

Degrees of the kernel:

degreer1,n,degreer2,n,degreer3,n,degreer4,n

2,2,2,2

(11)

degrees1,n,degrees2,n,degrees3,n,degrees4,n

3,3,3,3

(12)

The degree of v1 is minimal.

degreev1,n,degreev2,n,degreev3,n,degreev4,n

0,23,2,6

(13)

The degree of u2 is minimal.

degreeu1,n,degreeu2,n,degreeu3,n,degreeu4,n

19,0,7,3

(14)

For i=3,4, the degree of the shell is minimal.

degreeu1,n+degreev1,n,degreeu2,n+degreev2,n,degreeu3,n+degreev3,n,degreeu4,n+degreev4,n

19,23,9,9

(15)

References

  

Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.

  

Abramov, S.A., and Petkovsek, M. "Canonical representations of hypergeometric terms." Proc. FPSAC'2001, pp. 1-10. 2001.

See Also

evalb

LREtools[dispersion]

subs

SumTools[Hypergeometric]

SumTools[Hypergeometric][EfficientRepresentation]

SumTools[Hypergeometric][MultiplicativeDecomposition]

SumTools[Hypergeometric][PolynomialNormalForm]

SumTools[Hypergeometric][SumDecomposition]