Gamma - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Gamma

  

gamma distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Gamma(b, c)

GammaDistribution(b, c)

Parameters

b

-

scale parameter

c

-

shape parameter

Description

• 

The gamma distribution is a continuous probability distribution with probability density function given by:

ft=0t<0tbc1&ExponentialE;tbbΓcotherwise

  

for 0<b,0<c where Γc is the Gamma function.

• 

Some sources use other parametrizations for this distribution; they might describe this distribution as Gammac&comma;b or Gammac&comma;1b.

• 

The gamma variate with scale parameter b and shape parameter 1 is equivalent to the Exponential variate with scale parameter b.

• 

The gamma variate with scale parameter 1 and shape parameter c is equivalent to the Erlang variate with shape parameter c.

• 

Note that the Gamma command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableGammaDistributionb&comma;c&colon;

PDFX&comma;u

0u<0ubc1&ExponentialE;ubbΓcotherwise

(1)

PDFX&comma;0.5

0.5bc1.&ExponentialE;0.5bbΓc

(2)

MeanX

bc

(3)

VarianceX

b2c

(4)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]