QuasiComponent - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[ConstructibleSetTools]

  

QuasiComponent

  

construct a constructible set from a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

QuasiComponent(rc, R)

Parameters

rc

-

regular chain

R

-

polynomial ring

Description

• 

The command QuasiComponent(rc, R) returns a constructible set cs that encodes the quasi-component of the regular chain rc, that is, those points that cancel all equations of rc, but don't cancel any of the initials of the polynomials in rc.

• 

This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form QuasiComponent(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][QuasiComponent](..).

• 

See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system, and a regular chain.

Examples

withRegularChains:

withConstructibleSetTools:

RPolynomialRingx,y,u,v

Rpolynomial_ring

(1)

Fux+v,vy+u

Fux+v,vy+u

(2)

decTriangularizeF,R,output=lazard

decregular_chain,regular_chain

(3)

mapEquations,dec,R

ux+v,vy+u,u,v

(4)

mapInequations,dec,R

u,v,

(5)

cs1QuasiComponentdec1,R;cs2QuasiComponentdec2,R

cs1constructible_set

cs2constructible_set

(6)

Infocs1,R;Infocs2,R

ux+v,vy+u,1

u,v,1

(7)

InfoUnioncs1,cs2,R,R

u,v,1,ux+v,vy+u,1

(8)

See Also

ConstructibleSet

ConstructibleSetTools

Info

RegularChains

RegularSystem

RepresentingChain

RepresentingInequations

RepresentingRegularSystems

Triangularize