Edges - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


PolyhedralSets

  

Faces

  

get the faces of a polyhedral set

  

ID

  

get the identifier of a polyhedral set

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Faces(polyset)

Faces(polyset, dimension = d)

Faces(polyset, faceid = id)

ID(polyset)

Parameters

polyset

-

polyhedral set

dimension

-

(optional) integer greater than or equal to −1, dimension of faces to be returned, defaults to one less than the dimension of polyset to return its facets

faceid

-

(optional) integer or a set or list of integers indexing faces of polyset

Description

• 

The calling sequences Faces(polyset) and Faces(polyset, dimension = d) return a list of polyhedral sets that are d-faces of polyset.  Faces(polyset) uses a default value of dimension = Dimension(polyset) - 1, returning the facets of polyset.  If there are no faces of dimension d (e.g. asking for vertices of a half-space), an empty list is returned.

• 

The PolyhedralSets[Vertices] (or, PolyhedralSets[Vertexes]) command is shorthand for Faces(polyset, dimension = 0).  Similarly, PolyhedralSets[Edges] is shorthand for Faces(polyset, dimension = 1), and PolyhedralSets[Facets] is shorthand for Faces(polyset).

• 

A particular face can be retrieved via Faces(polyset, faceid = id).  The identification number id corresponds to those displayed on the graph returned by PolyhedralSets[Graph].

• 

The ID number of a given set can alternatively by obtained with the ID command.  This returns an integer that identifies a set relative to its faces.  Two unrelated polyhedral sets can have the same ID number, but the faces of a given polyhedral set will always have unique ID numbers.

Examples

withPolyhedralSets:

Get the facets of a tetrahedron

tExampleSets:-Tetrahedron:t_facesFacest

t_faces{Coordinates:x1,x2,x3Relations:x31,x2+x30,x21,x1+x2x3=1,{Coordinates:x1,x2,x3Relations:x31,x21,x2x30,x1x2+x3=1,{Coordinates:x1,x2,x3Relations:x31,x2x30,x21,x2x3+x1=−1,{Coordinates:x1,x2,x3Relations:x31,x21,x2+x30,x2+x3+x1=−1

(1)

Plot the faces individually (which will give them each a different color).

Plott_faces

The edges of the 5 dimensional simplex are:

s5ExampleSets:-Simplex5

s5{Coordinates:x1,x2,x3,x4,x5Relations:x50,x40,x30,x20,x10,x1+x2+x3+x4+x51

(2)

s5_edgesFacess5,dimension=1

s5_edges{Coordinates:x1,x2,x3,x4,x5Relations:x50,x51,x4+x5=1,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x50,x51,x4=0,x3+x5=1,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x40,x41,x3+x4=1,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x50,x51,x4=0,x3=0,x2+x5=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x40,x41,x3=0,x2+x4=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x30,x31,x2+x3=1,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x50,x51,x4=0,x3=0,x2=0,x1+x5=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x40,x41,x3=0,x2=0,x1+x4=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x30,x31,x2=0,x1+x3=1,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,x20,x21,x1+x2=1,{Coordinates:x1,x2,x3,x4,x5Relations:x50,x51,x4=0,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x40,x41,x3=0,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x30,x31,x2=0,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,x20,x21,x1=0,{Coordinates:x1,x2,x3,x4,x5Relations:x5=0,x4=0,x3=0,x2=0,x10,x11

(3)

ID numbers are used to identify the faces of a given set, but different unrelated sets may have the same ID number.

p1PolyhedralSet3x,10y+x,x10,x,y,z;p2PolyhedralSety5,3y+x,x7,x,y,z;IDp1;IDp2

p1{Coordinates:x,y,zRelations:yx−10,x−3,x10

p2{Coordinates:x,y,zRelations:y5,yx−3,x7

26

26

(4)

The faces of a set form a universe, within which the ID numbers uniquely identify members of the graph of the set.

mapID,Facesp1

5,11,25

(5)

mapID,Facesp2

17,23,25

(6)

Compatibility

• 

The PolyhedralSets[Faces] and PolyhedralSets[ID] commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

PolyhedralSets[VerticesAndRays]

PolyhedralSets[Dimension]

PolyhedralSets[Graph]

GraphTheory

GraphTheory[DrawGraph]

PolyhedralSets[PolyhedralSet]

PolyhedralSets