MultivariatePowerSeries/TaylorShift - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : MultivariatePowerSeries/TaylorShift

MultivariatePowerSeries

  

TaylorShift

  

Perform a Taylor shift of a univariate polynomial over power series

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

TaylorShift(u, c)

Parameters

u

-

univariate polynomial over power series generated by this package

c

-

numeric value or algebraic number

Description

• 

The command TaylorShift(u, c) returns the univariate polynomial over power series obtained by substituting v + c for v in u, where v is the main variable of u. In other words, the result is obtained by composing u with the map that sends v to v + c.

• 

A typical usage is when c is a root of the polynomial returned by EvaluateAtOrigin(u). This happens, for example, in HenselFactorize.

• 

When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series and univariate polynomials over power series. If you do, you may see invalid results.

Examples

withMultivariatePowerSeries:

We define a univariate polynomial over power series.

fUnivariatePolynomialOverPowerSeriesPowerSeries1,SumOfAllMonomialsx,y,GeometricSeriesy,z

fUnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: 1+1+x+y+z+1+y+z2

(1)

We apply a Taylor shift by 1, and then by -1 on the result.

f1TaylorShiftf,1

f1UnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: 3++3+x+3y+z+1+y+z2

(2)

f0TaylorShiftf1,1

f0UnⅈvarⅈatⅇPolynomⅈalOvⅇrPowⅇrSⅇrⅈⅇs: 1+1+x+y+z+1+y+z2

(3)

We verify that the result is equal to the original polynomial (up to homogeneous degree 20).

ApproximatelyEqualf,f0,20

true

(4)

Compatibility

• 

The MultivariatePowerSeries[TaylorShift] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

ApproximatelyEqual

EvaluateAtOrigin

MainVariable

UnivariatePolynomialOverPowerSeries