Rank - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LinearAlgebra[Modular]

  

Rank

  

compute the rank of a mod m Matrix

  

RankProfile

  

compute the rank profile of a square mod m Matrix

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Rank(m, A, meth)

RankProfile(m, A, meth)

Parameters

m

-

modulus

A

-

mod m Matrix

meth

-

(optional) keyword for choice of method

Description

• 

The Rank function returns the rank of the input mod m Matrix, while the RankProfile function returns a list of 'rank' elements describing the rank profile of the input mod m Matrix.

  

The rank profile list is simply a list of the location of the first non-zero entry in each nontrivial row in the row reduced form of the Matrix.

• 

The following methods are available:

REF

(default) Compute using standard row-reduction (Row Echelon Form)

inplaceREF

Compute using standard row-reduction in-place in the input Matrix

RET

Compute using a Row Echelon Transformation approach

inplaceRET

Compute using a Row Echelon Transformation in-place in the input Matrix

• 

Note that the two inplace methods available will destroy the data in the input Matrix, while the other two methods will generate a copy of the Matrix in which to perform the computation.

• 

The RET methods are likely to be faster for large matrices, but may fail if the modulus is composite.

• 

These commands are part of the LinearAlgebra[Modular] package, so they can be used in the form Rank(..) and RankProfile(..) only after executing the command with(LinearAlgebra[Modular]).  However, they can always be used in the form LinearAlgebra[Modular][Rank](..) and LinearAlgebra[Modular][RankProfile](..).

Examples

(1)

(2)

(3)

With an inplace method the input Matrix is altered

(4)

And a case that is not full rank

(5)

(6)

(7)

A composite example where the RET method is unsuccessful

(8)

(9)

Error, (in LinearAlgebra:-Modular:-RowEchelonTransform) modulus is composite

Note that this is only because this is a case where the row echelon form exists, but the row echelon transform cannot be written in the required form.

See Also

LinearAlgebra/Details

LinearAlgebra[Modular]

LinearAlgebra[Modular][Create]

LinearAlgebra[Modular][RowEchelonTransform]

LinearAlgebra[Modular][RowReduce]

 


Download Help Document