GroupTheory
ProjectiveGeneralOrthogonalGroup
construct a permutation group isomorphic to a projective general orthogonal group
Calling Sequence
Parameters
Description
Examples
ProjectiveGeneralOrthogonalGroup(d, n, q)
PGO(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The projective general orthogonal group PGOd,n,q is the quotient of the general orthogonal group GOd,n,q by its center. The value of d must be 0 for odd n, or 1 or −1 for even n.
The ProjectiveGeneralOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the general orthogonal group GOd,n,q .
The PGO( d, n, q ) command is provided as an alias.
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing PGOd,n,q is returned.
withGroupTheory:
G≔ProjectiveGeneralOrthogonalGroup0,3,3
G≔PGO0,3,3
GroupOrderG
24
AreIsomorphicG,Symm4
true
IsDihedralPGO−1,2,8
GroupOrderPGO0,5,q
igcd2,q−1q4q2−1q4−12q::oddigcd2,q−1q4q2−1q4−1otherwise
IsTrivialPGO0,1,3110
See Also
GroupTheory[GeneralOrthogonalGroup]
Download Help Document