GroupTheory/IsSemiprimitive - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : GroupTheory/IsSemiprimitive

GroupTheory

  

IsSemiprimitive

  

determine whether a permutation group is semi-primitive

  

IsQuasiprimitive

  

determine whether a permutation group is quasi-primitive

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IsSemiprimitive( G, domain )

IsQuasiprimitive( G, domain )

Parameters

G

-

: PermutationGroup : a permutation group

domain

-

: set(posint) : (optional) a G-invariant subset of the support of G

Description

• 

A permutation group  is quasi-primitive if each of its non-trivial normal subgroups is transitive.

• 

A permutation group  is semi-primitive if each of its non-trivial normal subgroups either is transitive or semi-regular.

• 

Because every non-trivial normal subgroup of a primitive permutation group is transitive, it is clear that semi-primitivity and quasi-primitivity are generalizations of primitivity. In particular, every primitive permutation group is both semi-primitive and quasi-primitive. It also follows from the definitions that a quasi-primitive permutation group is semi-primitive.

• 

The IsQuasiprimitive( G ) command returns true if the permutation group G is quasi-primitive, and returns the value false otherwise.

• 

The IsSemiprimitive( G ) command returns true if the permutation group G is semi-primitive, and returns false if it is not.

• 

The optional domain argument, which must be a G-invariant set, can be used to specify a particular domain of action for G. By default, domain is equal to the support of G, that is, the set of points displaced by some element of G.

Examples

Since symmetric groups are primitive, they are also both semi-primitive and quasi-primitive.

(1)

(2)

(3)

(4)

The cyclic group of order  is semi-primitive, but not quasi-primitive.

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

The following groups fail to be semi-primitive (hence, also quasi-primitive) since they are not even transitive.

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

See Also

GroupTheory

GroupTheory[CyclicGroup]

GroupTheory[IsPrimitive]

GroupTheory[IsTransitive]

GroupTheory[Support]

 


Download Help Document