Killing - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[Killing] - find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace

LieAlgebras[KillingForm] - find the Killing form (symmetric tensor) of a Lie algebra

Calling Sequences

     Killing(x, y)

     Killing(Alg)

     Killing(h)

     KilllingForm(Alg)

Parameters

     x,y      - a pair of vectors in a Lie algebra 𝔤

     Alg      - (optional) the name of a Lie algebra

     h        - a list of vectors defining a basis for a subspace of a Lie algebra 𝔤

 

Description

Examples

Description

• 

The Killing form on a ndimensional Lie algebra 𝔤  is the symmetric quadratic form B defined by  Bx, y =traceadxady for any x, y  𝔤 . Here adx and ady are the adjoint matrices for the vectors x and y. In terms of the structure constants Cijk with respect to the basis {ei }for 𝔤,one has bij = Bei, ej =k,ℓ =1nCiℓk Ckjℓ . If 𝔥  𝔤 is a subspace with basis x1, x2, ... ,xp, then the restriction of the Killing form to 𝔥 is given by the p ×p matrix b rs = Bxr, xs.

• 

 Killing() returns the n ×n symmetric matrix bij for the Lie algebra defined by the current frame. Killing(Alg) returns the n ×n symmetric matrix bij for the Lie algebra Alg. Alg.Killing(h) returns the Killing Matrix b rs restricted to the subalgebra 𝔥.

• 

KillingForm(Alg) returns the symmetric rank 2-tensor bij θi  θj, where the {θi} are the dual 1-forms to the basis {ei }.

• 

The command Killing is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Killing(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Killing(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

L1_DGLieAlgebra,Alg1,3,2,3,1,1,1,3,2,1,1,2,3,1:

Alg1   > 

DGsetupL1:

MultiplicationTableLieBracket

e1,e2=e3,e1,e3=e2,e2,e3=e1

(2.1)

 

Compute the Killing form on the vectors x = e1 + e2 and y = e1  e2 +e3.

Alg1 > 

XevalDGe1+e3

X:=e1+e3

(2.2)
Alg1 > 

YevalDGe1e2+e3

Y:=e1e2+e3

(2.3)
Alg1 > 

KillingX,Y

4

(2.4)

 

Compute the Killing form for the current Lie algebra.

Alg1 > 

KKilling

 

Compute the Killing form restricted to the subspace S = spane2, e3.

Alg1 > 

Se2,e3:

Alg1 > 

KillingS

 

Example 2.

 Here is the Killing form for the Lie algebra from Example 1, given as a symmetric, covariant tensor on the Lie algebra.

KillingFormAlg1

2θ1θ12θ2θ22θ3θ3

(2.5)

 

 

 

See Also

DifferentialGeometry

LieAlgebras

Adjoint

MultiplicationTable

Query[Semisimple]