DirectionalCovariantDerivative - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : Tensor : DirectionalCovariantDerivative

Tensor[DirectionalCovariantDerivative] - calculate the covariant derivative of a tensor field in the direction of a vector field and with respect to a given connection

Calling Sequences

     DirectionalCovariantDerivative(X, T, C1, C2)

Parameters

   X   - a vector field

   T   - a tensor field

   C1  - a connection

   C2  - (optional) a second connection, needed when the tensor T is a mixed tensor defined on a vector bundle

 

Description

Examples

See Also

Description

• 

Let  be a manifold and let  be a linear connection on the tangent bundle of . If  and  are vector fields on , then  is a vector field on  called the directional covariant derivative of  in the direction  with respect to the connection . If  is a differential 1-form, then  is the 1-form defined by

 

 The definition of the directional covariant derivative operator  is extended to tensor fields on  as a derivation with respect to the tensor product.

• 

Let  be a vector bundle and let  be a connection on . If  is a vector field on  and is a section of , then  is a section of  called the directional covariant derivative of the section  in the direction  with respect to the connection . The definition of the directional covariant derivative operator  is extended to tensor fields on the fibers of  as above.

• 

Let  be a vector bundle, let  be a linear connection on the tangent bundle of  and  be a connection on . Let  be a mixed tensor on , for example, , where  is a tensor field on and  is a tensor field on the fibers of . (In general  will be a sum of such tensor products). Then the directional covariant derivative of  in the direction  with respect to the connections  and  is . This definition is extended to more general mixed tensors by linearity.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form DirectionalCovariantDerivative(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-DirectionalCovariantDerivative.

Examples

 

Example 1.

First create a 2 dimensional manifold  and define a connection  on the tangent space of .

 

(2.1)
M > 

(2.2)

 

Define some vector fields and tensor fields and compute the directional covariant derivative with respect to .

M > 

M > 

(2.3)
M > 

(2.4)
M > 

M > 

(2.5)
M > 

(2.6)
M > 

M > 

M > 

(2.7)
M > 

(2.8)
M > 

M > 

(2.9)

 

Example 2.

Define a frame on  and use this frame to specify a connection  on the tangent space of .

 

M > 

M > 

(2.10)
M1 > 

(2.11)

 

Define a vector field and a tensor field and compute the directional covariant derivative with respect to .

M1 > 

M1 > 

(2.12)
M1 > 

(2.13)

 

Example 3.

First create a rank 3 vector bundle  and define a connection  on .

M1 > 

(2.14)
E > 

(2.15)
E > 

E > 

(2.16)
E > 

(2.17)

 

To covariantly differentiate a mixed tensor on , a connection on  is also needed.

E > 

(2.18)
E > 

(2.19)
E > 

(2.20)
E > 

(2.21)

See Also

DifferentialGeometry, Tensor, Christoffel, Connection, CovariantDerivative, CurvatureTensor, DGinfo, GeodesicEquations, ParallelTransportEquations


Download Help Document