>
|
|
Example 1.
Integrate the 2-form (x^2 + 3*x*y)*dx &w dy over the triangle T with vertices (0, 0), (1, 0), and (0, 1).
>
|
|
>
|
|
To evaluate the double integral over T we note that for a point (x, y) in T the variable x ranges from 0 to 1 and, for a given x value, y ranges from 0 to 1 - x.
>
|
|
Example 2.
Compute the line integral of the 1-form omega = y^2*dx + z^2*dy + x*y*z*dz along the curve x = sin(t)*cos(t), y = sin(t)*cos(t), z = exp(t) from t = 0 to t = Pi.
>
|
|
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
Example 3.
Compute the surface integral of the 1-form omega = y^2*z^2*dx &w dy + x^2*y^2*dy &w dz + x^2*z^2*dx &w dz over the surface of the ellipsoid x^2 + y^2/4 + z^2/9 = 1.
We shall parameterize the surface of the ellipsoid with coordinates (theta, phi) and map x = cos(theta)*sin(phi), y = 2*sin(theta)*sin(phi), z = 3*cos(phi).
>
|
|
>
|
|
| (6) |
>
|
|
| (7) |
>
|
|