|
Calling Sequence
|
|
hypergeom( aL, bL, c )
ChebyshevT( a, b )
ChebyshevU( a, b )
CoulombF( a, b, c )
CoulombG( a, b, c )
HermiteH( a, b )
JacobiP( n, a, b, c )
KummerU( a, b, c )
KummerM( a, b, c )
GegenbauerC( n, a, b )
LaguerreL( a, b, c )
LegendreP( a, b )
LegendreP( a, b, c )
|
|
Parameters
|
|
a
|
-
|
RealBox object
|
b
|
-
|
RealBox object
|
c
|
-
|
RealBox object
|
n
|
-
|
RealBox object
|
aL
|
-
|
list of RealBox objects
|
bL
|
-
|
list of RealBox objects
|
precopt
|
-
|
(optional) equation of the form precision = n, where n is a positive integer
|
|
|
|
|
Description
|
|
•
|
A number of hypergeometric functions are defined for RealBox objects:
|
CoulombF
|
CoulombG
|
HermiteH
|
ChebyshevT
|
ChebyshevU
|
JacobiP
|
GegenbauerC
|
LaguerreL
|
LegendreP
|
KummerU
|
KummerM
|
hypergeom
|
|
|
•
|
They override the standard Maple procedures for RealBox objects, or certain special cases of the Maple hypergeom procedure.
|
•
|
Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.
|
|
|
Examples
|
|
>
|
|
| (1) |
| (2) |
| (3) |
| (4) |
>
|
|
| (7) |
>
|
|
| (8) |
>
|
|
| (9) |
| (10) |
| (11) |
>
|
|
| (12) |
>
|
|
| (13) |
>
|
|
| (14) |
>
|
|
| (15) |
>
|
|
| (16) |
| (17) |
>
|
|
| (18) |
|
|
Compatibility
|
|
•
|
The RealBox[Hypergeom], RealBox:-hypergeom, RealBox:-CoulombF, RealBox:-CoulombG, RealBox:-HermiteH, RealBox:-ChebyshevT, RealBox:-ChebyshevU, RealBox:-JacobiP, RealBox:-GegenbauerP, RealBox:-LaguerreL, RealBox:-LegendreP, RealBox:-KummerU and RealBox:-KummerM commands were introduced in Maple 2022.
|
|
|
|