Hypergeom - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

RealBox

  

Hypergeom

  

hypergeometric functions for RealBox objects

  

hypergeom

  

compute the hypergeometric function of a RealBox object

  

CoulombF

  

compute the Coulomb F function of a RealBox object

  

CoulombG

  

compute the Coulomb G function of a RealBox object

  

HermiteH

  

compute the Hermite H function of a RealBox object

  

ChebyshevT

  

compute the Chebyshev T function of a RealBox object

  

ChebyshevU

  

compute the Chebyshev U function of a RealBox object

  

JacobiP

  

compute the Jacobi P function of a RealBox object

  

GegenbauerP

  

compute the Gegenbauer C function of a RealBox object

  

LaguerreL

  

compute the Laguerre L function of a RealBox object

  

LegendreP

  

compute the Legendre P function of a RealBox object

  

KummerU

  

compute the Kummer U function of a RealBox object

  

KummerM

  

compute the Kummer M function of a RealBox object

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

hypergeom( aL, bL, c )

ChebyshevT( a, b )

ChebyshevU( a, b )

CoulombF( a, b, c )

CoulombG( a, b, c )

HermiteH( a, b )

JacobiP( n, a, b, c )

KummerU( a, b, c )

KummerM( a, b, c )

GegenbauerC( n, a, b )

LaguerreL( a, b, c )

LegendreP( a, b )

LegendreP( a, b, c )

Parameters

a

-

RealBox object

b

-

RealBox object

c

-

RealBox object

n

-

RealBox object

aL

-

list of RealBox objects

bL

-

list of RealBox objects

precopt

-

(optional) equation of the form precision = n, where n is a positive integer

Description

• 

A number of hypergeometric functions are defined for RealBox objects:

CoulombF

CoulombG

HermiteH

ChebyshevT

ChebyshevU

JacobiP

GegenbauerC

LaguerreL

LegendreP

KummerU

KummerM

hypergeom

• 

They override the standard Maple procedures for RealBox objects, or certain special cases of the Maple hypergeom procedure.

• 

Use the 'precision' = n option to control the precision used in these methods. For more details on precision, see BoxPrecision.

Examples

hypergeom,RealBox2,RealBox2.3

RealBox: 2.68583±1.856ⅇ-09

(1)

aRealBox1.1

aRealBox: 1.1±1.16415ⅇ-10

(2)

bRealBox2.3

bRealBox: 2.3±2.32831ⅇ-10

(3)

cRealBox7.654

cRealBox: -7.654±4.65661ⅇ-10

(4)

nRealBox5

nRealBox: 5±0

(5)

tRealBox2.0

tRealBox: 2±0

(6)

hypergeom1,2,3,4,b

RealBox: 1.57075±1.41963ⅇ-09

(7)

CoulombFRealBox0,RealBox0,RealBoxπ

RealBox: -1.06352ⅇ-10±1.00863ⅇ-08

(8)

CoulombGn,a,b

RealBox: 74.681±1.50885ⅇ-06

(9)

ChebyshevTa,b

RealBox: 2.63169±2.3599ⅇ-09

(10)

ChebyshevUa,b

RealBox: 5.33486±1.14856ⅇ-08

(11)

GegenbauerCn,a,b

RealBox: 2110.19±6.35073ⅇ-06

(12)

JacobiPn,a,b,c

RealBox: -1.32471ⅇ+06±0.0128264

(13)

KummerUa,c,b

RealBox: 0.0698887±1.51965ⅇ-08

(14)

KummerMa,c,b

RealBox: 4.06526±7.20886ⅇ-08

(15)

LaguerreLn,a,b

RealBox: 0.288414±1.21033ⅇ-07

(16)

LegendrePa,b

RealBox: 2.56247±3.65995ⅇ-09

(17)

LegendrePn,a,b

RealBox: 2314.71±1.40768ⅇ-05

(18)

Compatibility

• 

The RealBox[Hypergeom], RealBox:-hypergeom, RealBox:-CoulombF, RealBox:-CoulombG, RealBox:-HermiteH, RealBox:-ChebyshevT, RealBox:-ChebyshevU, RealBox:-JacobiP, RealBox:-GegenbauerP, RealBox:-LaguerreL, RealBox:-LegendreP, RealBox:-KummerU and RealBox:-KummerM commands were introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

ComplexBox

ComplexBox[Hypergeom]

hypergeom

KummerU

RealBox

 


Download Help Document