MeijerG - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MeijerG

Meijer G function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

MeijerG([as, bs], [cs, ds], z)

Parameters

as

-

list of the form [a1, ..., am]; first group of numerator  parameters

bs

-

list of the form [b1, ..., bn]; first group of denominator  parameters

cs

-

list of the form [c1, ..., cp]; second group of numerator  parameters

ds

-

list of the form [d1, ..., dq]; second group of denominator  parameters

z

-

expression

Description

• 

The Meijer G function is defined by the inverse Laplace transform

  

where

  

and  L is one of three types of integration paths , , and .

  

Contour  starts at  and finishes at .

  

Contour  starts at  and finishes at .

  

Contour  starts at  and finishes at .

  

All the paths , , and  put all  poles on the right and all other poles of the integrand (which must be of the form ) on the left.

• 

The classical notation used to represent the MeijerG function relates to the notation used in Maple by

  

Note: See Prudnikov, Brychkov, and Marichev.

  

The MeijerG function satisfies the following th-order linear differential equation

  

where  and p is less than or equal to q.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

  

Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. New York: Gordon and Breach Science Publishers, 1990.

See Also

Appell

convert/StandardFunctions

dpolyform

Heun

hypergeom

hyperode

 


Download Help Document