LinearDependency - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

IntegerRelations

  

LinearDependency

  

find an integer dependence (relation)

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

LinearDependency(v,opts)

Parameters

v

-

list or Vector of (complex) floating-point numbers

opts

-

(optional); equation of the form method=LLL or method=PSLQ specifying the algorithm used

Description

• 

The LinearDependency(v,opts) command finds an integer relation between the numbers in v - if they are linearly dependent. Given a list (or a Vector) of n real or complex numbers, LinearDependency outputs a list (or a Vector) u of n integers such that i=1nuivi is close to zero.

• 

By default, Bailey and Ferguson's PSLQ (Partial Sum of Least Squares) algorithm is used if the numbers in v are real.

• 

The optional argument method=LLL specifies that the LLL (Lenstra-Lenstra-Lovasz) lattice basis reduction algorithm be used, which is the default if v contains non-real values.

• 

The internal working precision of the LinearDependency command corresponds to the value of Digits. For best results, the same value of Digits should be used with which the input approximation was obtained.

Examples

withIntegerRelations:

rsqrt2+sqrt3

r2+3

(1)

vexpandseqri,i=0..4

v1,2+3,5+223,112+93,49+2023

(2)

vevalfv,12

v1.,3.14626436994,9.89897948556,31.1448064542,97.9897948556

(3)

vevalfv

v1.,3.146264370,9.898979486,31.14480645,97.98979486

(4)

uLinearDependencyv

u1,0,−10,0,1

(5)

adduivi,i=1..5

0.

(6)

madduizi1,i=1..5

mz410z2+1

(7)

simplifyevalm,z=r

0

(8)

r1+213

r1+−213

(9)

vVectorexpandseqri,i=0..4,12

v11+−2131+2−213+−2231+3−213+3−2237+2−213+6−223

(10)

vevalfv,12:vevalfv

v1.1.629960525+1.091123636I1.466220524+3.556976909I−1.491220003+7.397559819I−10.50228211+10.43062509I

(11)

uLinearDependencyv,method=LLL

u−1−26−41

(12)

adduivi,i=1..5

0.1.×10−8I

(13)

madduizi1,i=1..5

mz44z3+6z22z1

(14)

simplifyevalm,z=r

0

(15)

solvem=0,z

1,213+1,2132I32132+1,2132+I32132+1

(16)

evalcr

2132+I32132+1

(17)

See Also

identify

IntegerRelations

IntegerRelations[LLL]

IntegerRelations[PSLQ]

 


Download Help Document