GroupTheory/ProjectiveGeneralSemilinearGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : GroupTheory/ProjectiveGeneralSemilinearGroup

GroupTheory

  

ProjectiveGeneralSemilinearGroup

  

construct a permutation group isomorphic to the General Semi-linear Group over a finite field

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ProjectiveGeneralSemilinearGroup( n, q )

PGammaL( n, q )

Parameters

n

-

a positive integer

q

-

a power of a prime number

Description

• 

The projective general semi-linear group PΓLn,q is the quotient of the group ΓLn,q of all semi-linear transformations of an n-dimensional vector space over the field with q elements, by the center of GLn,q . It is isomorphic to a semi-direct product of the general linear group GLn,q with the Galois group of the field with q elements over its prime sub-field. Thus, if q is prime, then PΓLn,q and GLn,q are equal.

• 

If n is a positive integer, and q is a prime power, then the ProjectiveGeneralSemilinearGroup( n, q ) command returns a permutation group isomorphic to the projective general semi-linear group PΓLn,q . Otherwise, a symbolic group is returned, with which Maple can do some limited computations.

• 

The abbreviation PGammaL( n, q ) is available as a synonym for ProjectiveGeneralSemilinearGroup( n, q ).

Examples

withGroupTheory:

GProjectiveGeneralSemilinearGroup2,4

G2,3,4,1,2,5,3,4

(1)

GroupOrderG

120

(2)

AreIsomorphicG,Symm5

true

(3)

GPGammaL2,5

G2,4,5,3,1,5,62,3,4

(4)

GroupOrderG

120

(5)

AreIsomorphicG,Symm5

true

(6)

GPGammaL2,9

G2,7,5,6,3,4,9,8,1,3,104,5,76,8,9,4,85,96,7

(7)

GroupOrderG

1440

(8)

ctCharacterTableG

Displayct

C

1a

2a

2b

2c

3a

4a

4b

4c

5a

6a

8a

8b

10a

|C|

1

30

36

45

80

90

90

180

144

240

180

180

144

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ__1

1

1

1

1

1

1

1

1

1

1

1

1

1

χ__2

1

−1

−1

1

1

−1

1

1

1

−1

−1

1

−1

χ__3

1

−1

1

1

1

−1

1

−1

1

−1

1

−1

1

χ__4

1

1

−1

1

1

1

1

−1

1

1

−1

−1

−1

χ__5

9

−3

−1

1

0

1

1

−1

−1

0

1

1

−1

χ__6

9

−3

1

1

0

1

1

1

−1

0

−1

−1

1

χ__7

9

3

−1

1

0

−1

1

1

−1

0

1

−1

−1

χ__8

9

3

1

1

0

−1

1

−1

−1

0

−1

1

1

χ__9

10

−2

0

2

1

−2

−2

0

0

1

0

0

0

χ__10

10

2

0

2

1

2

−2

0

0

−1

0

0

0

χ__11

16

0

−4

0

−2

0

0

0

1

0

0

0

1

χ__12

16

0

4

0

−2

0

0

0

1

0

0

0

−1

χ__13

20

0

0

−4

2

0

0

0

0

0

0

0

0

DrawNormalSubgroupLatticeG

GroupOrderPGammaL3,8

49448448

(9)

GroupOrderPGammaLn,q

logpqk=0n1qnqkq1

(10)

GroupOrderPGammaL5,q

logpqq51q5qq5q2q5q3q5q4q1

(11)

See Also

GF

GroupTheory[GeneralLinearGroup]

GroupTheory[GroupOrder]

GroupTheory[logp]

GroupTheory[SpecialSemilinearGroup]

 


Download Help Document