GRQuery - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[GRQuery] - check various geometric properties of fields on a spacetime

Calling Sequences

     GRQuery(arg1, arg2, ..., keyword)

Parameters

   arg1    - (optional) other arguments

   keyword - keyword string

 

Description

Examples

See Also

Description

• 

The GRQuery command can be used to check various properties of metrics and other tensor and spinor fields defined on a spacetime manifold. Admissible keyword strings are "NullTetrad", "OrthonormalFrame", "OrthonormalCoframe", "OrthonormalTetrad", "PrincipalNullDirection" "RecurrentTensor".

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form GRQuery(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-GRQuery.

Examples

 

Example 1.

Let  be a metric on a 4-dimensional manifold with signature . A list of 4 vectors  defines an orthonormal tetrad if


 

and all other inner products vanish. The command GRQuery, with the keyword "OrthonormalTetrad", can be used to check that a list of 4 vectors defines an orthonormal tetrad.

 

First create manifold  with coordinates .

M > 

(2.1)

 

Define a spacetime metric  on .

M > 

(2.2)

 

Define a tetrad  on . Verify that  is an orthonormal tetrad with respect to the metric .

M > 

(2.3)
M > 

(2.4)

 

Note that the same vectors, listed in a different order, do not necessarily define an orthonormal tetrad.

M > 

(2.5)

 

M > 

(2.6)

 

Example 2.

A list of 4 vectors  defines a (complex) null tetrad if  is the complex conjugate of ,

 

,  ,

 

and all other inner products vanish. In particular, the vectors  are all null vectors. The command GRQuery, with the keyword "NullTetrad", can be used to check that a list of 4 vectors defines a null tetrad.

 

M > 

(2.7)
M > 

(2.8)

 

Example 3.

To check that a given frame or co-frame is orthonormal in other dimensions or with different metric signatures, the keywords "OrthonormalFrame", "OrthonormalCoframe" are used.

First create a 3-manifold  with coordinates .

M > 

(2.9)

 

Define a Riemannian metric  on .

M > 

(2.10)

 

Define a frame  on  with respect to the metric . Verify that  is an orthonormal frame.

M > 

(2.11)

(2.12)

 

Define a co-frame  with respect to the metric . Verify that  is an orthonormal co-frame.

M > 

(2.13)

(2.14)

 

One can use an optional 3rd argument, a square matrix , to specify the orthogonality relations to be verified - if , then GRQuery(F, g, A, "OrthonormalFrame") returns true if . For example:

M > 

(2.15)
M > 

(2.16)
M > 

M > 

(2.17)

 

Example 4.

The keyword argument "PrincipalNullDirection" will test to see if a given vector is a principal null direction for a given metric. The Weyl tensor of the metric is a required argument.

M > 

(2.18)
M > 

(2.19)
M > 

 

The metric g4 is of Petrov type D and therefore admits two independent principal null directions.

M > 

(2.20)
M > 

(2.21)
M > 

(2.22)
M > 

(2.23)

 

Example 5.

The keyword argument "RecurrentTensor" will test to see if a given tensor is a recurrent tensor with respect to a given metric or connection. If true, then the associated eigen-form is also returned.

 

M > 

(2.24)
M > 

(2.25)
M > 

(2.26)
M > 

(2.27)

See Also

DifferentialGeometry, Tensor, DGGramSchmidt, NullTetrad, PetrovType, PrincipalNullDirections, OrthonormalTetrad, RecurrentTensors,  SpinorInnerProduct, SolderForm, TensorInnerProduct


Download Help Document