MatrixAlgebras - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[MatrixAlgebras] - create a Lie algebra data structure for a matrix Lie algebra

Calling Sequences

     MatrixAlgebras(keyword, n, AlgName)

     MatrixAlgebras("subalgebra", tensorList, AlgName)

Parameters

     keyword     - a keyword string, one of "Full", "Upper", "StrictlyUpper"

     n           - a positive integer, the dimension of the matrices for the matrix Lie algebra to be created

     AlgName     - a name or a string, the name of the Lie algebra to be created

     tensorList  - a list of vectors, differential forms or tensors defined on an n dimensional space

 

Description

Examples

Description

• 

The set of all real, n x n matrices form a Lie algebra with respect to the Lie bracket defined by the matrix commutator [a, b] = ab - ba.  This Lie algebra is usually denoted by gl(n, R).  A matrix Lie algebra is simply a subalgebra of gl(n, R).  Examples of matrix algebras include: [i] the upper triangular n x n matrices; [ii] the strictly upper triangular n x n matrices; [iii] the trace-free n x n matrices; and [iv] the skew-symmetric n x n matrices.  All of these matrix algebras, and many others, can be created with the MatrixAlgebra program.

• 

The Lie algebras of all n x n matrices, the upper triangular n x n matrices, and the strictly upper triangular n x n matrices can be created using the first calling sequence for MatrixAlgebra.  The program returns the required Lie algebra data structure and lists of labels e[i, j] for the vectors and epsilon[i, j] for the dual 1-forms for the matrix Lie algebra to be created.  Here e[i, j] represents the matrix with a 1 in the i-th row and j-th column and zeros elsewhere.

• 

Other matrix algebras are created as subalgebras of gl(n, R), which are symmetries for a list of prescribed tensors using the second calling sequence for MatrixAlgebra.  For example, if T = [t^i_{jk}] is a type (1, 2) tensor on the vector space R^n, then an element a = [a^l_m] of gl(n, R) is a symmetry of T if the equation a^i_m t^m_{jk} - a^l_j t^i_{lk} - a^l_k t^i_{jl} = 0 (sum on l, m) holds.  If we introduce coordinates x^i on R^n, then this symmetry condition is the same as the Lie derivative equation L_X (T) = 0, where T = t^i_{jk} partial_{x^i} dx^j dx^k and X is the linear vector field X = a^l_m x^m partial_{x^l}.  The MatrixAlgebra program, with the keyword option "subalgebra", creates the matrix subalgebra of gl(n, R), which is the symmetry algebra for all the tensors in the list tensorsList.

• 

The command MatrixAlgebras is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form MatrixAlgebras(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-MatrixAlgebras(...).

Examples

 

Example 1.

Create the Lie algebra data structure for the Lie algebra of all 2 x 2 matrices.

(2.1)

 

Let us check that this result agrees with the direct computation of gl(2) using LieAlgebraData.

gl2 > 

gl2 > 

(2.2)

 

Example 2.

We create the 6 dimensional Lie algebra of all 3 x 3 Upper triangular matrices.  This is the standard example of a solvable algebra.

gl2 > 

(2.3)
gl2 > 

T3 > 

T3 > 

(2.4)

 

Example 3.

We create the 8 dimensional Lie algebra of all 3 x 3 trace-free matrices.  This is the classical matrix algebra sl(3, R).  It is simple (i.e. semisimple and indecomposable).  First we create the Lie algebra of all 3 x 3 matrices.

T3 > 

(2.5)
T3 > 

 

Now define an auxiliary 3 dimensional space, call it R3.  Choose any coordinates labels.

gl3 > 

 

Define the standard volume form on R3.

R3 > 

(2.6)

 

Find the subalgebra of gl(3) which preserves this volume form.

R3 > 

(2.7)

 

Note that each of the matrices represented by the elements of the list SL3 are trace-free.

gl3 > 

(2.8)
gl3 > 

(2.9)
sl3 > 

(2.10)

 

Example 4.

We create the 6 dimensional Lie algebra of all 4 x 4 skew-symmetric matrices.  This is the classical matrix algebra so(4, R).  It is semisimple but not simple (that is, it is decomposable).  First we create the Lie algebra of all 4 x 4 matrices.

sl3 > 

sl3 > 

 

Now define an auxiliary 4 dimensional space, call it R4.  Choose any coordinates labels.

gl4 > 

 

Define the standard Euclidean metric tensor on R4.

R5 > 

(2.11)

 

Find the subalgebra of gl(3) which preserves this volume form.

R5 > 

(2.12)

 

Note that each of the matrices represented by the elements of the list SO4 are skew-symmetric.

gl4 > 

(2.13)
gl4 > 

so4 > 

(2.14)
so4 > 

(2.15)

See Also

DifferentialGeometry

LieAlgebras

LieAlgebraData

MultiplicationTable

Query

 


Download Help Document