Softmax - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


DeepLearning/Tensor/Softmax

compute softmax of a Tensor

DeepLearning/Tensor/SoftmaxCrossEntropyWithLogits

compute softmax of a Tensor with logits

DeepLearning/Tensor/Softplus

compute softplus of a Tensor

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

Softmax(t,opts)

SoftmaxCrossEntropyWithLogits(t,labels=x,logits=y,opts)

Softplus(t,opts)

Parameters

t

-

Tensor

opts

-

zero or more options as specified below

Options

• 

axis=list(integer) or integer

The value of option axis is an integer or list of integers which describes which axis of the input Tensor to reduce across.

• 

name=string

The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.

Description

• 

The Softmax(t,opts) command computes the softmax function of a Tensor t,

• 

The SoftmaxCrossEntropyWithLogits(t,labels=x,logits=y) command computes the softmax function with labels x and logits y.

• 

The Softplus(t,opts) command computes log(exp(t)+t) of a Tensor t.

Examples

withDeepLearning:

WVariable29.,93.,29.,12.,80.,96.,96.,92.,89.,datatype=float8

WDeepLearning VariableName: Variable:0Shape: [3, 3]Data Type: float[8]

(1)

SoftmaxW

DeepLearning TensorShape: [3, 3]Data Type: float[8]

(2)

SoftplusW

DeepLearning TensorShape: [3, 3]Data Type: float[8]

(3)

Compatibility

• 

The DeepLearning/Tensor/Softmax, DeepLearning/Tensor/SoftmaxCrossEntropyWithLogits and DeepLearning/Tensor/Softplus commands were introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

DeepLearning Overview

DeepLearning,SoftmaxLayer

Tensor

 


Download Help Document