 And - Maple Help

verify/And, verify/Or, verify/Not

Boolean combinations of verifications Calling Sequence verify(expr1, expr2, And(ver1, ver2,...)) verify(expr1, expr2, Or(ver1, ver2,...)) verify(expr1, expr2, Not(ver)) Parameters

 expr1, expr2 - anything ver, ver1, ver2, ... - verifications Description

 • With And, Or, and Not, new verifications can be constructed from existing verifications.
 • An And verification structure returns true if the first two arguments satisfy the relations checked by all the verifications ver1, ver2, ...
 • An Or verification structure returns true if the first two arguments satisfy at least one of the relations checked by the given verifications.
 • Not converts any true results into false and any standard false results (of type 'verify'(false)) into true.
 • These verifications are symmetric in the first two arguments if and only if the verifications ver1, ver2, ... are symmetric.
 • The constructor Or can be used instead of a set to fix the order of evaluation of the verifications. Examples

 > $\mathrm{verify}\left(\left\{a,b\right\},\left\{a,b,c\right\},'\mathrm{And}'\left('\mathrm{subset}','\mathrm{Not}'\left('\mathrm{set}'\right)\right)\right)$
 ${\mathrm{true}}$ (1)
 > $\mathrm{verify}\left(\left\{a,b,c\right\},\left\{a,b,c\right\},'\mathrm{And}'\left('\mathrm{subset}','\mathrm{Not}'\left('\mathrm{set}'\right)\right)\right)$
 ${\mathrm{false}}$ (2)

expand is much cheaper operation, so call it before calling simplify

 > $\mathrm{verify}\left(\left[x\left(x-1\right),b{ⅇ}^{a+c}\right],\left[{x}^{2}-x,{ⅇ}^{a+\mathrm{ln}\left(b{ⅇ}^{c}\right)}\right],'\mathrm{list}'\left('\mathrm{Or}'\left('\mathrm{expand}','\mathrm{simplify}'\right)\right)\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{verify}\left(0.3,0.5,\mathrm{float}\left(10\right)\right)$
 $\left[{\mathrm{false}}{,}{2.}{×}{{10}}^{{9}}{,}{\mathrm{ulps}}\right]$ (4)
 > $\mathrm{verify}\left(0.3,0.5,'\mathrm{Not}'\left('\mathrm{float}'\left(10\right)\right)\right)$
 ${\mathrm{true}}$ (5)