Solution Steps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Solution Steps

Maple 2021 includes numerous new algorithms for showing step-by-step solutions for a variety of problems in mathematics.

 

Long Division

Factoring

Solve

Calculus: Integration, Differentiation, and Limits

Differential Equations

Matrix Inverse

Eigenvalues

Eigenvectors

Gauss Jordan Elimination

Share your solution

Where did I go wrong?

Long Division

The LongDivision command gives a visual solution to an arithmetic or polynomial long division problem, showing all of the intermediate steps.

withStudent:-Basics:

LongDivision48x4+284x3+620x2+593x+210,2x+3

2x+3x2224x3+106x2+151x+70)x2148x41+284x31+620x21+593x1+21048x4+72x3.212x3+620x2212x3+318x2.302x2+593x302x2+453x.140x+210140x+210.0

(1.1)

LongDivision1001,30, 'decimaldigits'=4;

 — — — —3—3—.—3—6—6—6— 30 ) 1001.0000       9—0—       101        9—0—        110         9—0—         200         1—8—0—          200          1—8—0—           200           1—8—0—            20

(1.2)

Factoring

The FactorSteps command shows the steps in factoring a polynomial.

withStudent:-Basics:

FactorStepsx3+6x2+12x+8

x3+6x2+12x+81. Trial EvaluationsRewrite in standard formx3+6x2+12x+8The factors of the constant coefficient 8 are:C=1,2,4,8Trial evaluations of x in ±C find x = −2 satisfies the equation, so x+2 is a factorx3+6x2+12x+8x=−2|x3+6x2+12x+8x=−2=0Divide by x+2x+2x22x2+4x+4)x21x31+6x21+12x1+8x3+2x2.4x2+12x4x2+8x.4x+84x+8.0Quotient times divisor from long divisionx2+4x+4x+22. Examine term:x2+4x+43. Apply the AC MethodExamine quadraticx2+4x+4Look at the coefficients, Ax2+Bx+CA=1,B=4,C=4Find factors of |AC| = |14| = 41,2,4Find pairs of the above factors, which, when multiplied equal 414,22Which pairs of these factors have a sum of B = 4? Found:2+2=4Split the middle term to use above pairx2+2x+2x+4Factor x out of the first pairxx+2+2x+4Factor 2 out of the second pairxx+2+2x+2x+2 is a common factorxx+2+2x+2Group common factorx+2x+2This gives:x+2x+24. This gives:x+2x+2x+2

(2.1)

Solve

The SolveSteps command shows the steps in solving an equation or system of equations

withStudent:-Basics:

SolveSteps5ⅇ4x=16

Let's solve5ⅇ4x=16Convert from exponential equationDivide both sides by 55ⅇ4x5=165Simplifyⅇ4x=165Apply ln to each sidelnⅇ4x=ln165Apply ln rule: ln(e^b) = b4x=ln165Divide both sides by 44x4=ln1654Exact solutionx=ln1654Approximate solutionx=0.2907877025

(3.1)

SolveSteps12x+y=18,7x8y=32

Let's solve12x+y=18,7x8y=32Pick the 2nd equation to solve for y7x8y=32A: isolate for ySubtract 7x from both sides7x8y7x=327xSimplify−8y=327xDivide both sides by −8−8y−8=327x−8Simplifyy=−4+7x8Solutiony=4+7x8Substitute the value of y=4+7x8 into the 1st equation of the system12x+4+7x8=18Solve for xEvaluate subtraction and addition103x84=18Add 4 to both sides1038x4+4=18+4Simplify1038x=22Divide both sides by 1038x10381038=221038Simplifyx=221038Rewrite division as multiplication by reciprocalx=228103Multiply fraction and reduce by gcdx=176103Substitute x=176103 into equation A y=−4+78176103Solve for yEvaluate multiplication and divisiony=−4+154103Evaluate subtraction and additiony=258103Solutionx=176103,y=258103

(3.2)

Calculus: Integration, Differentiation, and Limits

The ShowSolution command has been improved to show more detailed steps when solving integration, differentiation, and limit problems.

with Student:-Calculus1 :

ShowSolutionsinx2ⅆx

Integration Stepssinx2ⅆx1. RewriteEquivalent expressionsinx2=12cos2x2This gives:12cos2x2ⅆx2. Apply the sum ruleRecall the definition of the sum rulefx+gxⅆx=fxⅆx+gxⅆxfx=12gx=cos2x2This gives:12ⅆx+cos2x2ⅆx3. Apply the constant rule to the term 12ⅆxRecall the definition of the constant ruleCⅆx=CxThis means12ⅆx=x2We can now rewrite the integral as:x2+cos2x2ⅆx4. Apply the constant multiple rule to the term cos2x2ⅆxRecall the definition of the constant multiple ruleCfxⅆx=CfxⅆxThis means:cos2x2ⅆx=cos2xⅆx2We can rewrite the integral as:x2cos2xⅆx25. Apply a change of variables to rewrite the integral in terms of uLet u beu=2xIsolate equation for xx=u2Differentiate both sidesdx=du2Substitute the values for x and dx back into the originalcos2xⅆx=cosu2ⅆuThis gives:x2cosu2ⅆu26. Apply the constant multiple rule to the term cosu2ⅆuRecall the definition of the constant multiple ruleCfuⅆu=CfuⅆuThis means:cosu2ⅆu=cosuⅆu2We can rewrite the integral as:x2cosuⅆu47. Evaluate the integral of cos(u)Recall the definition of the cos rulecosuⅆu=sinuThis gives:x2sinu48. Revert change of variableVariable we defined in step 5u=2xThis gives:x2sin2x4

(4.1)

ShowSolution Limit sinxx, x=0  

 

 

 

 

 

 

 

 

Diffx2 sinx, x

ⅆⅆxx2sinx

(4.2)

ShowSolution  

 

 

 

 

 

 

 

 

 

 

Differential Equations

The ODESteps command provides detailed steps when solving ordinary differential equations and systems of ODEs.

with Student:-ODEs :

ode1t2zt+1+zt2t1ⅆⅆtzt=0

ode1t2zt+1+zt2t1ⅆⅆtzt=0

(5.1)

ODESteps ode1 

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0Highest derivative means the order of the ODE is 1ⅆⅆtztSeparate variablesⅆⅆtztzt2zt+1=t2t1Integrate both sides with respect to tⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+_C1Evaluate integralzt22zt+lnzt+1=t22tlnt1+_C1

(5.2)

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

(5.3)

ODEStepsivp2 

Let's solveⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1Isolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+xⅇxGroup terms with yx on the lhs of the ODE and the rest on the rhs of the ODE, ODE is linearⅆ2ⅆx2yxⅆⅆxyx=xⅇxCharacteristic polynomial of homogeneous ODEr2r=0Factor the characteristic polynomialrr1=0Roots of the characteristic polynomialr=0,11st solution of the homogeneous ODEy1x=12nd solution of the homogeneous ODEy2x=ⅇxGeneral solution of the ODEyx=_C1y1x+_C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=_C1+_C2ⅇx+ypxFind a particular solution ypx of the ODEUse variation of paramaters to find yp here fx is the forcing functionypx=y1xy2xfxWy1x,y2xⅆx+y2xy1xfxWy1x,y2xⅆx,fx=xⅇxWronskian of solutions of the homogeneous equationWy1x,y2x=?Compute WronskianWy1x,y2x=ⅇxSubstitute functions into equation for ypxypx=xⅇxⅆx+ⅇxxⅆxCompute integralsypx=ⅇxx22x+22Substitute particular solution into general solution to ODEyx=_C1+_C2ⅇx+ⅇxx22x+22Use initial condition y0=11=_C1+_C2+1Compute derivative of the solutionⅆⅆxyx=_C2ⅇx+ⅇxx22x+22+ⅇx2x22Use the initial condition ⅆⅆxyxx=0|ⅆⅆxyxx=0=00=_C2Solve for _C1 and _C2_C1=0,_C2=0Solution to the IVPyx=ⅇxx22x+22

(5.4)

Matrix Inverse

The InverseTutor command now has an option to return detailed steps for finding the matrix inverse.

withStudent:-LinearAlgebra:

M  337248−2−46:

InverseTutor M, output=steps 

Compute the inverse of this matrix?Matrix augmented with identity? Multiply row 1 by 1/3? Add -2 times row 1 to row 2? Add 2 times row 1 to row 3? Multiply row 2 by 1/6? Add 1 times row 2 to row 1? Add 6 times row 2 to row 3? Multiply row 3 by 1/14? Add -26/9 times row 3 to row 1? Add -5/9 times row 3 to row 2?We have found the inverse?

(6.1)

Eigenvalues

The EigenvaluesTutor command now has an option to return detailed steps for finding Eigenvalues.

withStudent:-LinearAlgebra:

M  120232021:

EigenvaluesTutor M, output=steps 

Compute the Eigenvalues?Calculate A=M-t*Id?Find the determinant; this is also called the characteristic polynomial of M.t3+5t2+t5Solve; the eigenvalues are the roots of the characteristic polynomial.?

(7.1)

Eigenvectors

The EigenvectorsTutorcommand now has an option to return detailed steps for finding Eigenvectors.

withStudent:-LinearAlgebra:

M  120232021:

EigenvectorsTutor M, output=steps 

Gauss Jordan Elimination

The GaussJordanEliminationTutor command now has an option to return detailed steps for finding Eigenvalues.

withStudent:-LinearAlgebra:

M  120323250215:

GaussJordanEliminationTutor M, output=steps 

Gauss-Jordan Reduce? Add -2 times row 1 to row 2? Multiply row 2 by -1? Add -2 times row 2 to row 1? Add -2 times row 2 to row 3? Multiply row 3 by 1/5? Add -4 times row 3 to row 1? Add 2 times row 3 to row 2?

(9.1)

Share your solution

There's a connection to the new product Maple Learn as well.  These commands can output a link to a Maple Learn document containing the solution steps.  Maple Learn is a dynamic online environment for teaching and learning math, focused on high-school to second year university.  For more about Maple Learn, visit https://www.maplesoft.com/products/learn/

with Student:-Calculus1 :

cv  ShowSolution Int sinx2, x, output=canvas:

DocumentTools:-Canvas:-ShareCanvas cv 

https://learn.maplesoft.com/#/?d=COOROFHKHLBHPMHSIOFJCGHPPSARFJMSNQPFCRKKPSNQILITKLDMKNESLUCFNRDKFTELLNIKLMDREJDFFJKJDGMSJUOMPKHKIRJR

withStudent:-LinearAlgebra:

M  120232021:

EigenvectorsTutor M, output=link

https://learn.maplesoft.com/#/?d=HTNRCGNJBSDQKOCNLFFPKFAGANHOHILKPSIOLTPPGPHSBROQBGNPLFDJFFPJEMCMMGKLOHHJGODRNIKUESCIOMIIJTEFOHNUFFNG

 

Where did I go wrong?

In Maple 2021, students can now solve an equation by entering the step-by-step solution to the problem themselves, and then asking Maple for feedback.  The responsive feedback lets the student know whether or not the solution is correct, and if not, where they went wrong. The SolvePractice command generates an interactive application where a student can type in the steps to solve a given problem. Then, the student clicks the button, and the application analyzes their steps and provides feedback.  

withGrading:

SolvePractice3x3+20x2 = x3x29x13,x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These practice-with-feedback sheets can be deployed to the web via Maple Learn:

SolvePractice3x3+20x2 = x3x29x13,x, output=link

https://learn.maplesoft.com/#/?d=BHPKHJMJLGDJJHFTPQKRMLDKAULUCTBPPRHFDOEIANLUCIBOGRATCOHNAQKGMGLULONLAPLKENFUBUFIBMGGHUIJDNJSGFDJBSFK