stats(deprecated)/distributions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : stats(deprecated)/distributions

Distributions of the stats Package

 

Description

Examples

Description

• 

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

• 

The following discrete distributions are available:

binomiald[n,p]

discreteuniform[a,b]

empirical[list_prob]

hypergeometric[N1, N2, n]

negativebinomial[n,p]

poisson[mu]

• 

The following continuous distributions are available:

beta[nu1, nu2]

cauchy[a, b]

chisquare[nu]

exponential[alpha, a]

fratio[nu1, nu2]

gamma[a, b]

laplaced[a, b]

logistic[a, b]

lognormal[mu, sigma]

normald[mu, sigma]

studentst[nu]

uniform[a, b]

weibull[a, b]

 

 

• 

In the following, the discrete distributions have probability density functions that are evaluated at integral values of x.

• 

The binomialdn,p distribution (binomial distribution) has the probability density function nxpx1pnx. The name binomiald is so chosen in order to distinguish it from the function binomial(). Constraints: x is a non-negative integer no greater than n, n is a positive integer, p is a number between 0 and 1.

• 

The discreteuniforma,b distribution has a probability density function that is equal to zero if x<a or if b<x, and equal to 1ba+1 otherwise. Constraints: x is an integer, ab

• 

The empirical[list_prob] has its probability density function equal to zero if x<1 or nopslist_prob<x and equal to list_probx otherwise. Constraints: the probabilities must add to 1 exactly.

• 

The hypergeometricN1,N2,n, with N1 equal to the size of the success population, N2 equal to the  size of the failure population and n equal to the sample size, has the probability density function N1xN2nxN1+N2n. Constraints: nN1+N2.

• 

The negativebinomialn,p distribution has the probability density function equal to

n+x1xpn1px

  

Constraints: x is a non-negative integer no greater than n, n is a positive integer, p is a number between 0 and 1.

• 

The poissonμ distribution has the probability density function exp(-mu)*mu^x/x!

• 

For the continuous distributions, the parameter x takes a real value.

• 

The β&nu;1,&nu;2 distribution has the probability density function

1/Beta(nu1, nu2) * x^(nu1-1) * (1-x)^(nu2-1).

  

Constraints: nu1, nu2 are positive integers.

• 

The cauchya,b distribution has the probability density function 1πb1+xa2b2,0<b.

• 

The chisquareν distribution has the probability density function

x^((nu-2)/2) exp(-x/2)/2^(nu/2)/GAMMA(nu/2), x>0, nu>0.

  

Constraint: nu is a positive integer.

• 

The exponentialα,a distribution (exponential distribution) has the probability density function equal to  α&ExponentialE;αxa if ax and equal to zero if x<a. Constraint: alpha is a non-negative real number. Default: a=0.

• 

The fratio&nu;1,&nu;2 distribution has the probability density function

GAMMA( (nu1+nu2)/2)/GAMMA(nu1/2)/GAMMA(nu2/2)*(nu1/nu2)^(nu1/2)*

x^((nu1-2)/2) / ( 1+ (nu1/nu2)*f) ^ ((nu1+nu2)/2), x>0, nu1>0, nu2>0

  

This distribution is also known as the Fisher F distribution and the variance ratio distribution. Constraints: nu1, nu2 are positive integers.

• 

The γa,b distribution gamma distribution has the probability density function xa1&ExponentialE;xbΓaba,0<x,0<a,0<b. The parameter b, if absent, defaults to the value 1.

• 

The laplaceda,b distribution has the probability density function &ExponentialE;xab2b, 0<b. The name laplaced is so chosen to distinguish it from the laplace() function.

• 

The logistica,b distribution has the probability density function

&ExponentialE;xabb1+&ExponentialE;xab2,0<b

• 

The lognormalμ,σ has the probability density function

&ExponentialE;lnxμ22σ2x2πσ,0<x

  

The parameter mu has the default value 0 and the parameter sigma has the default value 1. Constraint: sigma cannot be 0. See also the normald distribution.

• 

The normaldμ,σ distribution has the probability density function

&ExponentialE;xμ22σ22πσ2

  

The parameter mu has the default value 0 and the parameter sigma has the default value 1. Note that sigma is the standard deviation and not the variance. Constraint: sigma must be positive.

• 

The studentstν distribution has the probability density function

GAMMA( (nu+1)/2 )/GAMMA(nu/2)/sqrt(nu*Pi)/(1+t^2/nu)^((nu+1)/2)

  

Constraint: nu is a positive integer.

• 

The uniforma,b distribution has the probability density function equal to 1ba if a<=x<=b, and to  0 otherwise. The value of b defaults to 1+a. The value of a defaults to 0. Constraint: a<b.

• 

The weibulla,b distribution has the probability density function

axa1&ExponentialE;xbaba,0<x,0<a,0<b

Examples

Important: The stats package has been deprecated. Use the superseding package Statistics instead.

statsstatevalf,pf,poisson32

0.2240418077

(1)

statsstatevalf,icdf,normald0.56

0.1509692155

(2)

statsrandom,γ3,13

2.482561473,0.5545542660,2.632923698

(3)

See Also

Statistics

Statistics[Distributions]

stats(deprecated)[random]

stats(deprecated)[statevalf]