linalg(deprecated)/rowspace - Help

Home : Support : Online Help : linalg(deprecated)/rowspace

linalg(deprecated)

 rowspace
 compute a basis for the row space
 colspace
 compute a basis for the column space

 Calling Sequence rowspace(A) colspace(A) rowspace(A, 'dim') colspace(A, 'dim')

Parameters

 A - matrix 'dim' - (optional) unevaluated name

Description

 • Important: The linalg package has been deprecated. Use the superseding packages LinearAlgebra[RowSpace] and LinearAlgebra[ColumnSpace], instead.
 - For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
 • The functions rowspace(A) and colspace(A) return a set of vectors that form a basis for the vector space spanned by the rows and columns of the matrix A, respectively.  The vectors are returned in a canonical form with leading entries 1.
 • The optional second parameter 'dim' is assigned the rank of A, which is the dimension of the row and column space.
 These functions are part of the linalg package, and so can be used in the form rowspace(..) only after performing the command with(linalg) or with(linalg, rowspace).  They can always be accessed in the long form linalg[rowspace](..).

Examples

Important: The linalg package has been deprecated. Use the superseding packages LinearAlgebra[RowSpace] and LinearAlgebra[ColumnSpace], instead.

 > $\mathrm{with}\left(\mathrm{linalg}\right):$
 > $A≔\mathrm{matrix}\left(3,2,\left[2,0,3,4,0,5\right]\right)$
 ${A}{≔}\left[\begin{array}{cc}{2}& {0}\\ {3}& {4}\\ {0}& {5}\end{array}\right]$ (1)
 > $\mathrm{rowspace}\left(A\right)$
 $\left\{\left[\begin{array}{cc}{0}& {1}\end{array}\right]{,}\left[\begin{array}{cc}{1}& {0}\end{array}\right]\right\}$ (2)
 > $\mathrm{colspace}\left(A\right)$
 $\left\{\left[\begin{array}{ccc}{0}& {1}& \frac{{5}}{{4}}\end{array}\right]{,}\left[\begin{array}{ccc}{1}& {0}& {-}\frac{{15}}{{8}}\end{array}\right]\right\}$ (3)
 > $B≔\mathrm{array}\left(\left[\left[0,0,0,1,0\right],\left[0,x,0,0,0\right],\left[0,0,y,y,0\right],\left[0,x,0,1,0\right]\right]\right)$
 ${B}{≔}\left[\begin{array}{ccccc}{0}& {0}& {0}& {1}& {0}\\ {0}& {x}& {0}& {0}& {0}\\ {0}& {0}& {y}& {y}& {0}\\ {0}& {x}& {0}& {1}& {0}\end{array}\right]$ (4)
 > $\mathrm{rowspace}\left(B,'d'\right)$
 $\left\{\left[\begin{array}{ccccc}{0}& {0}& {0}& {1}& {0}\end{array}\right]{,}\left[\begin{array}{ccccc}{0}& {0}& {1}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{ccccc}{0}& {1}& {0}& {0}& {0}\end{array}\right]\right\}$ (5)
 > $C≔\mathrm{matrix}\left(3,3,\left[\frac{15}{4},-\frac{3\sqrt{10}}{4},\frac{1\sqrt{165}}{4},-\frac{3\sqrt{10}}{4},\frac{3}{2},-\frac{1\sqrt{66}}{4},\frac{1\sqrt{165}}{4},-\frac{1\sqrt{66}}{4},\frac{11}{4}\right]\right)$
 ${C}{≔}\left[\begin{array}{ccc}\frac{{15}}{{4}}& {-}\frac{{3}{}\sqrt{{10}}}{{4}}& \frac{\sqrt{{165}}}{{4}}\\ {-}\frac{{3}{}\sqrt{{10}}}{{4}}& \frac{{3}}{{2}}& {-}\frac{\sqrt{{66}}}{{4}}\\ \frac{\sqrt{{165}}}{{4}}& {-}\frac{\sqrt{{66}}}{{4}}& \frac{{11}}{{4}}\end{array}\right]$ (6)
 > $\mathrm{colspace}\left(C\right)$
 Warning, unable to find a provably non-zero pivot
 $\left\{\left[\begin{array}{ccc}{0}& {0}& {1}\end{array}\right]{,}\left[\begin{array}{ccc}{0}& {1}& {0}\end{array}\right]{,}\left[\begin{array}{ccc}{1}& {0}& {0}\end{array}\right]\right\}$ (7)