simpform - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

# Online Help

###### All Products    Maple    MapleSim

difforms

 simpform
 simplify an expression involving forms

 Calling Sequence simpform(expr)

Parameters

 expr - Maple expression

Description

 • The function simpform will simplify an expression involving forms.  Its operations include collecting like terms, simplifying wedge products, and pulling out scalar factors.
 • The command with(difforms,simpform) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{difforms}\right):$$\mathrm{defform}\left(f=\mathrm{scalar},g=\mathrm{scalar}\right)$
 > $\left(fv\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&ˆ\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}u+u\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&ˆ\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\left(gv\right)$
 ${f}{}{v}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{u}{+}{g}{}{u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{v}$ (1)
 > $\mathrm{simpform}\left(\right)$
 $\left({f}{+}{\left({-1}\right)}^{{\mathrm{wdegree}}{}\left({u}\right){}{\mathrm{wdegree}}{}\left({v}\right)}{}{g}\right){}{v}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{u}$ (2)
 > $f\left(u\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&ˆ\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}v+u\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&ˆ\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}w\right)+gu\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&ˆ\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}v$
 ${f}{}\left({u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{v}{+}{u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{w}\right){+}{g}{}{u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{v}$ (3)
 > $\mathrm{simpform}\left(\right)$
 $\left({f}{+}{g}\right){}{u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{v}{+}{f}{}{u}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{&ˆ}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{w}$ (4)

 See Also