ZpairDirect - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

ZpairDirect

  

perform direct algorithm to construct Zeilberger's recurrences for rational functions

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ZpairDirect(F, n, k, En)

Parameters

F

-

rational function of n and k

n

-

name

k

-

name

En

-

name; denote the shift operator with respect to n

Description

• 

Let F be a rational function of n and k, En the shift operator with respect to n defined by EnFn,k=Fn+1,k. The ZpairDirect(F, n, k, En) command computes a Z-pair L,G such that

LFn,k=Gn,k+1Gn,k.

• 

The output from ZpairDirect is a list of two elements L,G representing the computed Z-pair L,G provided such a pair exists.

• 

The main distinction between ZpairDirect and Zeilberger's algorithm is that Zeilberger's algorithm uses an item-by-item examination technique for the order of the computed difference operator L.  For more information, see Zeilberger.

  

The function ZpairDirect, on the other hand, uses a direct algorithm to construct a Z-pair L,G for F. It first determines if there exists a Z-pair for F. If the answer is positive, it computes a Z-pair directly. Otherwise, it gives the conclusive error message ``there does not exist a Z-pair for F'' where F is the input rational function. When the Zeilberger routine is used, and if the input hypergeometric term T is also a rational function, ZpairDirect is invoked.

• 

For the ZpairDirect routine, the input F must be a rational function.

  

Note: If you set infolevel[ZpairDirect] to 3, Maple prints diagnostics.

Examples

withSumToolsHypergeometric:

F13n+20k+23

F13n+20k+23

(1)

Set the infolevel to 3.

infolevelZpairDirect3:

ZpairDirectF,n,k,En

ZpairDirect:   "Check for the existence of a Z-pair"
ZpairDirect:   "There exists a Z-pair"
ZpairDirect:   "Start computing a Z-pair for the given rational function"

En201,13n+20k+423+13n+20k+223+13n+20k+23

(2)

If the routine cannot determine a Z-pair, Maple returns an error.

F1k5+k3n+3k35nk22k25n217n6

F1k5+k3n+3k35nk22k25n217n6

(3)

infolevelZpairDirect0:

ZpairDirectF,n,k,En

Error, (in SumTools:-Hypergeometric:-ZpairDirect) there does not exist a Z-pair for 1/(k^5+k^3*n+3*k^3-5*k^2*n-2*k^2-5*n^2-17*n-6)

References

  

Le, H.Q. "A Direct Algorithm to Construct Zeilberger's Recurrences for Rational Functions." Proceedings FPSAC'2001, pp. 303-312. 2001.

See Also

infolevel

SumTools[Hypergeometric]

SumTools[Hypergeometric][IsZApplicable]

SumTools[Hypergeometric][MinimalZpair]

SumTools[Hypergeometric][Zeilberger]