Statistics/Specialize - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Statistics/Specialize

Statistics

  

Specialize

  

Specialize parameters

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Specialize(X, eqns)

Parameters

X

-

algebraic; random variable or distribution

eqns

-

list of equations, or a single equation, giving values for symbolic parameters in X

Description

• 

The Specialize function takes a random variable or distribution data structure that contains symbolic parameters, and performs a substitution to specialize the given random variable or distribution.

Examples

withStatistics:

Create a random variable which is normally distributed with mean a and standard deviation b.

XRandomVariableNormala,b

X_R

(1)

MeanX,StandardDeviationX

a,b

(2)

By setting a to 0, we obtain a random variable that is normally distributed with mean 0 and standard deviation b.

X1SpecializeX,a=0

X1_R0

(3)

MeanX1,StandardDeviationX1

0,b

(4)

Alternatively, we can set it so that mean and standard deviation are different functions of a single parameter c.

X2SpecializeX,a=c,b=c2

X2_R1

(5)

MeanX2,StandardDeviationX2

c,c2

(6)

Specialize also accepts algebraic expressions involving random variables.

YX+bX2

Y_R1b+_R

(7)

MeanY,StandardDeviationY

bc+a,b2c4+b2

(8)

Y1SpecializeY,b=a

Y1_R1a+_R2

(9)

MeanY1,StandardDeviationY1

ac+a,a2c4+a2

(10)

If a parameter evaluates to a constant, then Maple will complain if that constant does not satisfy the requirements for the parameter. For example, the standard deviation cannot be negative.

SpecializeX,b=1

Error, (in Statistics:-Specialize) invalid parameters obtained when substituting [b = -1]

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distribution]

Statistics[MaximumLikelihoodEstimate]

Statistics[RandomVariable]