 Project - Maple Help

PolyhedralSets

 Project
 project a polyhedral set to a lower coordinate dimension Calling Sequence Project(polyset, coords) Project(polyset, coords, reducespace) Project(polyset, M, coords) Project(polyset, eqs) Project(polyset,coords,redundancycheck) Parameters

 polyset - polyhedral set coords - list of names, coordinates of the projected set M - matrix with rational coefficients eqs - list of equations; subspace onto which the set is to be projected redundancycheck - can be set to linearprogramming or redundancycone Description

 • The calling sequence Project(polyset, coords) projects the set polyset onto the coordinate axes given in coords.  The projected set will have the same ambient space as polyset unless the reducespace option is given, in which case coords will be the ambient space for the new set.
 • A projection matrix M can be given with the calling sequence Project(polyset, M, coords).  The matrix M is of size $n\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}&x\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}m$, where $n$ is the number of coordinates in coords and $m$ is the number of coordinates in Coordinates(polyset).  It defines a transformation of the form $x=My$, where $x$ are the coordinates of polyset and $y$ the coordinates specified in coords.  coords must be a subset of the coordinates of polyset.  coords can optionally be omitted in this case to retain the same coordinate names.
 • The projection may also be specified by giving the subspace onto which the set should be projected in the form of a list of equations.  The set will be projected onto this subspace and the projected set will have the same ambient space as the original set.
 • The option redundancycheck specifies the algorithm for removing redundant inequalities in the process of projecting a polyhedral set. The default value of this option is linearprogramming, where the Simplex algorithm is called to detect redundant inequalities. The other option, redundancycone, generates a so-called redundancy cone in the beginning of the projection process. Then, the algorithm uses the extreme rays of this cone to detect redundant inequalities. This method only uses matrix operations. Examples

 > $\mathrm{with}\left(\mathrm{PolyhedralSets}\right):$

Construct a pyramid with a square base

 > $\mathrm{pyramid}≔\mathrm{PolyhedralSet}\left(\left[\left[1,1,0\right],\left[-1,1,0\right],\left[-1,-1,0\right],\left[1,-1,0\right],\left[0,0,1\right]\right],\left[x,y,z\right]\right)$
 ${\mathrm{pyramid}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{x}{,}{y}{,}{z}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{z}{\le }{0}{,}{z}{-}{y}{\le }{1}{,}{y}{+}{z}{\le }{1}{,}{-}{x}{+}{z}{\le }{1}{,}{z}{+}{x}{\le }{1}\right]\end{array}$ (1)
 > $\mathrm{Plot}\left(\mathrm{pyramid},\mathrm{orientation}=\left[38,76,0\right]\right)$ A top-down projection is obtained by eliminating the $z$ coordinate, which gives a square

 > $\mathrm{pyramid_top}≔\mathrm{Project}\left(\mathrm{pyramid},\left[x,y\right]\right)$
 ${\mathrm{pyramid_top}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{x}{,}{y}{,}{z}\right]\\ {\mathrm{Relations}}& {:}& \left[{z}{=}{0}{,}{-}{y}{\le }{1}{,}{y}{\le }{1}{,}{-}{x}{\le }{1}{,}{x}{\le }{1}\right]\end{array}$ (2)
 > $\mathrm{Plot}\left(\mathrm{pyramid_top}\right)$ A projection matrix can be used to define a side-view projection

 > $M≔⟨⟨1|0⟩,⟨0|0⟩,⟨0|1⟩⟩$
 ${M}{≔}\left[\begin{array}{cc}{1}& {0}\\ {0}& {0}\\ {0}& {1}\end{array}\right]$ (3)
 > $\mathrm{pyramid_side}≔\mathrm{Project}\left(\mathrm{pyramid},\left[a,b\right],M\right)$
 ${\mathrm{pyramid_side}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{a}{,}{b}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{b}{\le }{0}{,}{b}{-}{a}{\le }{1}{,}{a}{+}{b}{\le }{1}\right]\end{array}$ (4)
 > $\mathrm{Plot}\left(\mathrm{pyramid_side}\right)$ The pyramid can also be projected onto the subspace defined by the equation

 > $\mathrm{projection_subspace}≔\left[-2x-z=4\right]$
 ${\mathrm{projection_subspace}}{≔}\left[{-}{2}{}{x}{-}{z}{=}{4}\right]$ (5)
 > $\mathrm{plane}≔\mathrm{PolyhedralSet}\left(\mathrm{projection_subspace},\left[x,y,z\right]\right)$
 ${\mathrm{plane}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{x}{,}{y}{,}{z}\right]\\ {\mathrm{Relations}}& {:}& \left[{x}{+}\frac{{z}}{{2}}{=}{-2}\right]\end{array}$ (6)
 > $\mathrm{pyramid_oblique}≔\mathrm{Project}\left(\mathrm{pyramid},\mathrm{projection_subspace}\right)$
 ${\mathrm{pyramid_oblique}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{x}{,}{y}{,}{z}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{z}{\le }\frac{{6}}{{5}}{,}{-}{y}{\le }{1}{,}{-}{y}{+}\frac{{5}{}{z}}{{2}}{\le }{0}{,}{y}{\le }{1}{,}{y}{+}\frac{{5}{}{z}}{{2}}{\le }{0}{,}{x}{+}\frac{{z}}{{2}}{=}{-2}\right]\end{array}$ (7)
 > $\mathrm{Plot}\left(\mathrm{pyramid},\mathrm{plane},\mathrm{pyramid_oblique},\mathrm{orientation}=\left[38,76,0\right],\mathrm{transparency}=\left[0.,0.1,0.3\right],\mathrm{scaling}=\mathrm{constrained},\mathrm{view}=\left[-\frac{9}{4}..\frac{3}{2},-\frac{3}{2}..\frac{3}{2},-\frac{7}{4}..\frac{3}{2}\right]\right)$  References

 Rui-Juan Jing, Marc Moreno-Maza, and Delaram Talaashrafi, Complexity Estimates for Fourier-Motzkin Elimination, Proceedings CASC 2020, 282-306, 2020, LNCS 12291, Springer-Verlag. Compatibility

 • The PolyhedralSets[Project] command was introduced in Maple 2015.