GCRD - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


OreTools[Modular]

  

GCRD

  

compute the GCRD of two Ore polynomials modulo a prime

  

LCLM

  

compute the LCLM of a sequence of Ore polynomials modulo a prime

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Modular[GCRD](Ore1, Ore2, p, A)

Modular[LCLM](Ore1, Ore2, ..., Orek, p, A)

Parameters

Ore1, Ore2, ... Orek

-

Ore polynomials; to define an Ore polynomial, use the OrePoly structure

p

-

prime

A

-

Ore ring; to define an Ore ring, use the SetOreRing command

Description

• 

The Modular[GCRD](Ore1, Ore2, p, A) calling sequence returns the GCRD of Ore1 and Ore2 modulo the prime p.

• 

The Modular[LCLM](Ore1, Ore2, ..., Orek, p, A) calling sequence returns the GCRD of Ore1, Ore2, ..., Orek modulo the prime p.

Examples

withOreTools:

ASetOreRingn,differential

AUnivariateOreRingn,differential

(1)

Ore1OrePolyn,n+6

Ore1OrePolyn,n+6

(2)

Ore2OrePolyn,n1

Ore2OrePolyn,n1

(3)

Ore3OrePolyn+1,n1

Ore3OrePolyn+1,n1

(4)

Poly1ModularMultiplyOre1,Ore3,541,A

Poly1OrePoly540n2+6,9n+12,n+6n+540

(5)

Poly2ModularMultiplyOre2,Ore3,541,A

Poly2OrePoly540n2+540,2n+539,n+5402

(6)

ModularGCRDPoly1,Poly2,541,A

OrePolyn+1n+540,1

(7)

ModularLCLMPoly1,Poly2,Ore1,541,A

OrePoly540n6+531n5+37n4+227n3+468n2+95n+456n6+24n5+187n4+511n3+177n2+181n+1,2n6+38n5+168n4+405n3+438n2+101n+195n6+24n5+187n4+511n3+177n2+181n+1,519n5+169n4+97n3+68n2+439n+267n6+24n5+187n4+511n3+177n2+181n+1,539n5+523n4+88n3+396n2+200n+510n5+18n4+79n3+37n2+496n+451,1

(8)

References

  

Abramov, S.A.; Le, H.Q.; and Li, Z. "OreTools: a computer algebra library for univariate Ore polynomial rings." Technical Report CS-2003-12. School of Computer Science, University of Waterloo, 2003.

  

Li, Z., and Nemes, I. "A modular algorithm for computing greatest common right divisors of Ore polynomials." Proc. of ISSAC'97, pp. 282-289. Edited by W. Kuechlin. ACM Press, 1997.

See Also

OreTools

OreTools/Euclidean

OreTools/Modular

OreTools/OreAlgebra

OreTools/OrePoly

OreTools/SetOreRing