Invariants - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Invariants

attempt to find invariants of a LAVF object.

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Invariants( obj)

Parameters

obj

-

a LAVF object.

Description

• 

The Invariants method attempts to find the invariants of a LAVF object via integration. If successful, it returns the invariants as a list of expressions.

• 

Let L be a LAVF object and OD be the orbit distribution of L. Then Invariants(L) is equivalent to Integrals(OD). For more detail of the Distribution's methods, see Overview of the Distribution object.

• 

This method is associated with the LAVF object. For more detail, see Overview of the LAVF object.

Examples

withLieAlgebrasOfVectorFields:

Typesetting:-Settingsuserep=true:

Typesetting:-Suppressξx,y,z,ηx,y,z,ζx,y,z:

Build vector fields associated with 3-d spatial rotations...

RxVectorFieldzDy+yDz,space=x,y,z

Rxzⅆⅆy+yⅆⅆz

(1)

RyVectorFieldxDz+zDx,space=x,y,z

Ryzⅆⅆxxⅆⅆz

(2)

RzVectorFieldyDx+xDy,space=x,y,z

Rzyⅆⅆx+xⅆⅆy

(3)

We now construct a vector fields system (as a LAVF object) for SO(3) that are generated by these rotation vector fields.

VVectorFieldξx,y,zDx+ηx,y,zDy+ζx,y,zDz,space=x,y,z

Vξⅆⅆx+ηⅆⅆy+ζⅆⅆz

(4)

LEliminationLAVFV,Rx,Ry,Rz

Lξⅆⅆx+ηⅆⅆy+ζⅆⅆz&whereξ=ηyζzx,ηx=ζyz+ηx,ηy=0,ηz=ζy,ζy,y=0,ζx=ζyy+ζx,ζz=0

(5)

InvariantsL

x2+y2+z2

(6)

Compatibility

• 

The Invariants command was introduced in Maple 2020.

• 

For more information on Maple 2020 changes, see Updates in Maple 2020.

See Also

LieAlgebrasOfVectorFields (Package overview)

LAVF (Object overview)

Distribution (Object overview)

LieAlgebrasOfVectorFields[VectorField]

LieAlgebrasOfVectorFields[EliminationLAVF]

Integrals