IsInvariant
check if a distribution is invariant under Lie group action
Calling Sequence
Parameters
Description
Examples
Compatibility
IsInvariant(dist, L)
dist
-
a Distribution object.
L
a LAVF object
The IsInvariant method decides whether Distribution object dist is invariant under the action of the Lie transformation group generated by the vector fields from a LAVF object L. It returns the values true or false.
For this method to make sense, Distribution dist must be in involution (see IsInvolutive), and L must specify a Lie algebra (see IsLieAlgebra). An involutive distribution Σ is invariant under a Lie group action if the foliation induced by Σ maps to itself (i.e. leaves map to leaves).
This method is associated with the Distribution object. For more detail see Overview of the Distribution object.
with⁡LieAlgebrasOfVectorFields:
Typesetting:-Settings⁡userep=true:
Building a LAVF object
Typesetting:-Suppress⁡ξ⁡x,y,η⁡x,y,zeta⁡z
X ≔ VectorField⁡ξ⁡x,y⁢Dx+η⁡x,y⁢Dy+zeta⁡z⁢Dz,space=x,y,z
X≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz
Sys ≔ LHPDE⁡∂∂x⁢ξ⁡x,y=0,∂∂y⁢ξ⁡x,y=1⁢ξ⁡x,yy,η⁡x,y=−x⁢ξ⁡x,yy,ⅆ2ⅆz2⁢zeta⁡z=0,indep=x,y,z,dep=ξ,η,zeta
Sys≔ξx=0,ξy=ξy,η=−x⁢ξy,ⅆ2ζⅆz2=0,indep=x,y,z,dep=ξ,η,ζ
L ≔ LAVF⁡X,Sys
L≔ξ⁢ⅆⅆx+η⁢ⅆⅆy+ζ⁢ⅆⅆz&whereⅆ2ζⅆz2=0,ηx=ηx,ηy=0,ξ=−η⁢yx
Building some Distribution objects
Tx ≔ VectorField⁡Dx,space=x,y,z
Tx≔ⅆⅆx
Ty ≔ VectorField⁡Dy,space=x,y,z
Ty≔ⅆⅆy
Σ ≔ Distribution⁡Tx,Ty
Σ≔ⅆⅆx,ⅆⅆy
Gamma ≔ Distribution⁡Tx
Γ≔ⅆⅆx
Now we test if the following distributions are invariant under L
IsInvariant⁡Σ,L
true
IsInvariant⁡Gamma,L
false
The IsInvariant command was introduced in Maple 2020.
For more information on Maple 2020 changes, see Updates in Maple 2020.
See Also
Distribution (Object overview)
LieAlgebrasOfVectorFields[Distribution]
VectorField (Object overview)
LieAlgebrasOfVectorFields[VectorField]
LieAlgebrasOfVectorFields (Package overview)
Download Help Document