Normaliser - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Normaliser

  

construct the normaliser of a subgroup of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Normaliser( H, G )

NormaliserSubgroup( H, G )

NormalizerSubgroup( H, G )

Parameters

G

-

a permutation group or a Cayley table group

H

-

a permutation group or a Cayley table group

Description

• 

The normaliser of a subgroup  of  is the set of elements  for which commutation by  induces an automorphism on . That is, , or equivalently, , or equivalently, for all  we have .

• 

The Normaliser( H, G ) command constructs the normaliser of H in G. The group G must be a group given by a Cayley table or a permutation group.

• 

The NormaliserSubgroup and NormalizerSubgroup commands are provided as aliases. Note that Normalizer is a different command, unrelated to the  package; because it is an environment variable, the  package cannot provide a command with this name.

Examples

(1)

(2)

Now the elements of  correspond to the list  in the given order. We can find the elements corresponding to the permutations  and  by looking up their positions in , in order to construct the symmetric group on 3 letters as a subgroup .

(3)

(4)

(5)

Since  is itself a Cayley table group, it is most useful to inspect the images of the elements under the Embedding.

(6)

(7)

 is the direct product of  and the 2-element subgroup generated by the transposition .

(8)

(9)

Compatibility

• 

The GroupTheory[Normaliser] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[Centralizer]

 


Download Help Document