DifferentialGeometry/Tensor/RaiseLowerSpinorIndices - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/RaiseLowerSpinorIndices

Tensor[RaiseLowerSpinorIndices] - raise or lower a list of spinor indices using epsilon spinors

Calling Sequences

     RaiseLowerSpinorIndices(S, Indices)

Parameters

   S       - a spinor or spinor-tensor

   Indices - a list of integers, referring to the arguments of S

 

Description

Examples

See Also

Description

• 

Spinor indices are raised and lowed using the epsilon spinor.

• 

Indices are lowered by contraction with the first index of the covariant epsilon spinor and raised by contraction with the second index of the contravariant epsilon spinor. n terms of components:

SA=SBεBA,   SA=εABSB.

• 

The command RaiseLowerSpinorIndices(S, Indices) will raise or lower the indices of the spinor S given by the list Indices.

• 

Unlike the command RaiseLowerIndices for raising and lowering tensor indices, no metric need be specified.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form RaiseLowerSpinorIndices(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-RaiseLowerSpinorIndices.

Examples

with(DifferentialGeometry): with(Tensor):

 

Example 1.

First create a vector bundle M with base coordinates x,y,z,t and fiber coordinates z1, z2, w1, w2.

DGsetup([x, y, z, t], [z1, z2, w1, w2], M);

frame name: M

(2.1)

 

Define a contravariant rank 1 spinor S1 and lower its indices, that is, convert it to a covariant rank 1 spinor T1.

M > 

S1 := evalDG(a*D_z1 + b*D_z2);

S1:=aD_z1+bD_z2

(2.2)
M > 

T1 := RaiseLowerSpinorIndices(S1, [1]);

T1:=bdz1+adz2

(2.3)

 

Define the covariant epsilon spinor ε1 and check that this result coincides with the contraction of ε1 and S1.

M > 

epsilon1 := EpsilonSpinor("cov", "spinor");

ϵ1:=dz1dz2dz2dz1

(2.4)
M > 

ContractIndices(epsilon1, S1, [[1, 1]]);

bdz1+adz2

(2.5)

 

Convert T1 back to a contravariant rank 1 spinor, recovering S1.

M > 

RaiseLowerSpinorIndices(T1, [1]);

aD_z1+bD_z2

(2.6)

 

Example 2.

Define a rank 4 spinor-tensor S2 and raise its 2nd index and lower its 4th index.

M > 

S2 := evalDG(a*D_t &t dz1 &t D_w2 &t D_w1 + b*D_x &t dz2 &t D_w1 &t D_w2);

S2:=bD_xdz2D_w1D_w2+aD_tdz1D_w2D_w1

(2.7)
M > 

RaiseLowerSpinorIndices(S2, [2, 4]);

bD_xD_z1D_w1dw1aD_tD_z2D_w2dw2

(2.8)
M > 

 

See Also

DifferentialGeometry, Tensor, ContractIndices, EpsilonSpinor, RaiseLowerIndices