ControlDesign[StateFeedback]
PolePlacement
calculate the state feedback gain for single-input or multiple-input systems according to desired closed-loop poles
Calling Sequence
Parameters
Options
Description
Examples
References
PolePlacement(Amat, Bmat, p, opts)
PolePlacement(sys, p, opts)
sys
-
System; system object
p
list; list of desired closed-loop poles (real or complex). Complex poles including those containing symbolic parameters must be given in complex conjugate pairs. All symbolic parameters in the list are assumed to be real.
Amat
Matrix; system matrix of a state-space system
Bmat
Matrix or Vector; input matrix of a state-space system
opts
(optional) equation(s) of the form option = value; specify options for the PolePlacement command
return_Kr = true or false
True means return the direct gain . The returned value becomes a sequence (, ). The system must be specified with a system object sys. The default value is false.
parameters = {list, set}(name = complexcons)
Specifies numeric values for the parameters of sys. These values override any parameters previously specified for sys. The numeric value on the right-hand side of each equation is substituted for the name on the left-hand side in the sys equations. The default is the value of sys given by DynamicSystems:-SystemOptions(parameters).
The PolePlacement command calculates the state feedback gain for single-input or multiple-input systems according to the desired closed-loop pole locations given by p.
The system sys is a continuous or discrete-time linear system object created using the DynamicSystems package. The system object must be in state-space (SS) form and must be controllable. If Amat and Bmat matrices are specified, the (Amat, Bmat) pair must be controllable.
The pole placement is performed using the Sylvester equation method if open-loop and closed-loop poles are disjoint and there are no symbolic parameters in the and matrices and the p list. The closed-loop system matrix is then where is the calculated feedback gain. The algorithm detects if any of the open-loop poles and desired closed-loop poles are at the same position (or numerically too close) or if any symbolic parameters exists and switches to the cyclic method in such cases.
When the syntax PolePlacement(sys, p, return_Kr) is used, the direct gain is computed as follows:
(continuous time)
(discrete time)
If sys contains structural uncontrollable states, use ReduceSystem to remove them before computing the state feedback gain .
Numeric example
State-space system matrix Amat and input matrix Bmat (5 states and 3 inputs)
Desired poles
Obtain the state feedback gain Kc:
Verify the closed-loop system matrix has the desired poles
Symbolic example
System object sys with symbolic entries (3 states, 3 inputs, 3 outputs)
Desired symbolic poles
Obtain the state feedback gain Kc and the feed-forward gain Kr:
Use ReduceSystem
Get a subsystem considering the first two inputs.
Get the state-feedback gain for subsys1
Error, (in ControlDesign:-StateFeedback:-PolePlacement) the given state-space realization is not controllable
Remove the uncontrollable states if possible. ReduceSystem will remove the structural uncontrollable states.
Verify the resulting subsystem is controllable
Desired poles for the controllable subsystem
[1] T. Kailath, Linear Systems, Prentice-Hall, 1980.
[2] C. T. Chen, Linear System Theory and Design, 3rd Ed., Oxford University Press, 1999.
See Also
ControlDesign
ControlDesign[StateFeedback][Ackermann]
LinearAlgebra[SylvesterSolve]
Download Help Document