&^ - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

difforms

  

&^

  

wedge product

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

&^(expr1, expr2, ...)

expr1 &^ expr2 &^ ...

Parameters

expr[1], expr[2], ...

-

Maple expressions

Description

• 

The operator &^ represents the wedge product of differential forms.

• 

Elementary simplifications are done on wedge products. For example, if a is a form of odd degree, then &^(a, a) is simplified to 0.

• 

The operator &^ will distribute over + whenever possible. The preferred representation of &^ is a sum of wedge products. Otherwise, it may be necessary to apply expand, then simpform to an expression to reduce it to simplest form.

Examples

withdifforms:

defforma=1,b=1,c=1,d=2,e=2

`&^`a,b,c+de

&^a,b,c+&^a,b,d,e

(1)

`&^`a,b,c+`&^`d,e,ad

&^a,b,c

(2)

See Also

simpform

 


Download Help Document