GetPowerSeriesOrder - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MultivariatePowerSeries

  

GetPowerSeriesOrder

  

get the variable order of the internal power series of a Puiseux series

 

Calling Sequence

Parameters

Description

Examples

References

Compatibility

Calling Sequence

GetPowerSeriesOrder(s)

Parameters

s

-

Puiseux series generated by this package

Description

• 

This command returns the variable order of the internal power series of a Puiseux series.

• 

A Puiseux series is a power series in rational powers of the variables. More precisely:

– 

Let Xx1,,xp and Uu1,,um be ordered lists of variables.

– 

Let Rr1,,rm be a list of m grevlex-positive p-dimensional rational vectors.

– 

Let ee1,,ep be a point in p.

– 

Let gUn=0gnU be a multivariate power series in U with homogeneous components gnU.

  

For any v=v1,,vq in q and any list Y=y1,,yq, we write Yv for y1v1yqvq. Moreover, we write XR for the list Xr1,,Xrm of m products of powers of the variables in X. Then PXegXR is a Puiseux series, and every Puiseux series can be written in this way. This can be understood as evaluating gU at ui=Xri and then multiplying the result by Xe.

• 

We call g the internal power series of the Puiseux series P; X the variable order of P; U the variable order of g; and R the rays of P. The rays generate the cone containing the support of P, meaning the set of exponent vectors of X that occur in P with a nonzero coefficient, as in the paper by Monforte and Kauers (see References). The vertex of this cone is e.

• 

When using the MultivariatePowerSeries package, do not assign anything to the variables occurring in the power series, Puiseux series, and univariate polynomials over these series. If you do, you may see invalid results.

Examples

withMultivariatePowerSeries:

Create two Puiseux series.

pPowerSeries1+uv;Xx,y;Uu,v;R1,0,1,1;Ex=5,y=3

pPowⅇrSⅇrⅈⅇs: 1+uv

Xx,y

Uu,v

R1,0,1,−1

Ex=−5,y=3

(1)

s1PuiseuxSeriesp,X,U,R,E

s1PuⅈsⅇuxSⅇrⅈⅇs of x2y+1y3x5 : y3x5+y2x3

(2)

s2PuiseuxSeries11+wz,w=xy0,z=xy1,x=5,y=3

s2PuⅈsⅇuxSⅇrⅈⅇs of x5x2y+1y3 : x5y3+

(3)

We get the variable order of s1.

GetPowerSeriesOrders1

u,v

(4)

When we create a Puiseux series using a list of equations, Maple internally chooses a Power series order. Now, we get the variable order of s2.

GetPowerSeriesOrders2

w,z

(5)

Next, notice that after adding s1 and s2, the new variable order is a mix between the orders of s1 and s2

s3s1+s2

s3PuⅈsⅇuxSⅇrⅈⅇs of x2y+1+x10x2y+1y6y3x5 : y3x5+

(6)

GetPowerSeriesOrders3

u,v

(7)

References

  

Monforte, A.A., & Kauers, M. "Formal Laurent series in several variables." Expositiones Mathematicae. Vol. 31 No. 4 (2013): 350-367.

Compatibility

• 

The MultivariatePowerSeries[GetPowerSeriesOrder] command was introduced in Maple 2023.

• 

For more information on Maple 2023 changes, see Updates in Maple 2023.

See Also

MultivariatePowerSeries

PuiseuxSeries

 


Download Help Document