|
Calling Sequence
|
|
GegenbauerC(n, a, x)
|
|
Parameters
|
|
n
|
-
|
algebraic expression
|
a
|
-
|
algebraic expression
|
x
|
-
|
algebraic expression
|
|
|
|
|
Description
|
|
•
|
The GegenbauerC(n, a, x) function computes the nth Gegenbauer polynomial - see Abramowitz and Stegun, Handbook of Mathematical Functions, Chap. 22.
|
•
|
When all of are not a negative integer or zero, the Gegenbauer polynomials satisfy:
|
>
|
GegenbauerC(n,a,z) = 'piecewise'(n::negint,0, n=0, 1,convert(GegenbauerC(n,a,z),hypergeom));
|
| (1) |
|
and are orthogonal on the interval with respect to the weight function :
|
>
|
Int(w(z)* GegenbauerC(m, a, z) * GegenbauerC(n, a, z), z=-1..1) = 'piecewise'(n=m, Pi*2^(1-2*a)*GAMMA(n+2*a)/(n!*(n+a)*GAMMA(a)^2),0);
|
| (2) |
•
|
When any of is a negative integer or zero, the Gegenbauer polynomials are computed using the following identity:
|
>
|
GegenbauerC(n,a,z) = (2*a*z*(1+2*a)*GegenbauerC(n-1,1+a,z) + 4*(-1+z^2)*a*(1+a)*GegenbauerC(n-2,a+2,z)) / ((n+2*a)*n);
|
| (3) |
|
which in turn can be derived from the differential equation with respect to z satisfied by this function:
|
>
|
f(z) = GegenbauerC(a,b,z);
|
| (4) |
>
|
diff(f(z),z,z) = (-1-2*b)*z/(-1+z^2)*diff(f(z),z)+a*(2*b+a)/(-1+z^2)*f(z);
|
| (5) |
•
|
For n::posint and n > 1 and a <> 0, the Gegenbauer polynomials satisfy the following recurrence relations:
|
>
|
GegenbauerC(0,a,z) = 1:
|
>
|
GegenbauerC(1,a,z) = 2*a*z:
|
>
|
GegenbauerC(n,a,z) = 2*(n+a-1)/n*z*GegenbauerC(n-1,a,z) - (n+2*a-2)/n*GegenbauerC(n-2,a,z):
|
|
and for a = 0, they are related to the ChebyshevT polynomials:
|
>
|
GegenbauerC(n,0,z) = 2/n*ChebyshevT(n,z):
|
|
|
Examples
|
|
Special values with respect to n:
>
|
|
>
|
|
>
|
|
| (8) |
Special values with respect to a:
>
|
|
>
|
|
>
|
|
| (11) |
Special values with respect to z:
>
|
|
| (12) |
>
|
|
>
|
|
|
|
|