 cx_zero - Maple Help

type/cx_zero

check for an object of type complex zero Calling Sequence type(x, cx_zero) Parameters

 x - any expression Description

 • The type(x, cx_zero) function returns true if x is a 2-argument nonreal, where both arguments are $0.$, $0.$, or $-0.$.
 The quantities $0.$, $-0.$, $0.I$, and $-0.I$ are distinct and different from the quantities $0.+0.I$, $0.-0.I$, $-0.+0.I$, and $-0.-0.I$. Examples

 > $\mathrm{type}\left(0,\mathrm{cx_zero}\right)$
 ${\mathrm{false}}$ (1)
 > $\mathrm{type}\left(-0.,\mathrm{cx_zero}\right)$
 ${\mathrm{false}}$ (2)
 > $\mathrm{type}\left(0.I,\mathrm{cx_zero}\right)$
 ${\mathrm{false}}$ (3)
 > $\mathrm{type}\left(0+0.I,\mathrm{cx_zero}\right)$
 ${\mathrm{false}}$ (4)
 > $\mathrm{type}\left(0.+0.I,\mathrm{cx_zero}\right)$
 ${\mathrm{true}}$ (5)
 > $\mathrm{type}\left(-0.-0.I,\mathrm{cx_zero}\right)$
 ${\mathrm{true}}$ (6)

The distinction amongst the zeros allows Maple to return results such as the following.

 > $\mathrm{ln}\left(-1-0.I\right)$
 ${0.}{-}{3.141592654}{}{I}$ (7)
 > $\mathrm{ln}\left(-1+0.I\right)$
 ${0.}{+}{3.141592654}{}{I}$ (8)