Parameters

 plotargs - arguments to the plot command adaptive = v - (optional) option of the form adaptive = v, where v can be one of true, false, geometric, a non-negative integer, or (default) default

Description

 • The adaptive = v option controls the algorithm used by the plot command to produce two-dimensional plots.
 • When plotting a function over an interval, the interval is sampled at a number of points, controlled by sample and numpoints.  Adaptive plotting, where necessary, subdivides these intervals to attempt to get a better representation of the function. This subsampling can be turned off by setting the adaptive option to false.  If this option is set to true, intervals are subdivided at most 6 times in trying to improve the plot.  By setting this option to a non-negative integer, you can control the maximum number of times that subintervals are divided.
 • The adaptive = geometric option is used for non-parametric plots in the Cartesian coordinate system. (For parametric plots and those using other coordinate systems, the option adaptive = true is the default.)  This causes plot to use an algorithm based on interval arithmetic together with an a posteriori geometric analysis based loosely on the RealBox object, which allows for the efficient recognition of many discontinuities. Moreover, the curve on-screen is often more accurate than with the other possible values of the adaptive option. While the adaptive = geometric option has higher overhead than the adaptive = true (or false) options, in most cases, the extra overhead is acceptable. However, for animations assembled manually, or for very large expressions, you may wish to use adaptive = true instead.
 • The adaptive = default option which is, as the name suggests, the default value for this option, uses a blended strategy that usually selects geometric plotting, when applicable, and selects adaptive plotting in some cases, such as for polynomials or for larger expressions.
 • If adaptive = true is used, the discont option must also be used for plot to detect discontinuities.

Examples

 > $\mathrm{plot}\left(\mathrm{floor}\left(x\right)-\mathrm{floor}\left(\frac{x}{3}\right),x=-5..5\right)$
 > $\mathrm{plot}\left(\mathrm{floor}\left(x\right)-\mathrm{floor}\left(\frac{x}{3}\right),x=-5..5,'\mathrm{adaptive}'=\mathrm{true}\right)$
 > $\mathrm{plot}\left(\mathrm{floor}\left(x\right)-\mathrm{floor}\left(\frac{x}{3}\right),x=-5..5,'\mathrm{adaptive}'=\mathrm{false}\right)$
 > $\mathrm{plot}\left(\mathrm{floor}\left(x\right)-\mathrm{floor}\left(\frac{x}{3}\right),x=-5..5,'\mathrm{adaptive}'=\mathrm{true},'\mathrm{discont}'\right)$
 > $\mathrm{plot}\left(\mathrm{sin}\left(100x\right)+\mathrm{cos}\left(10x\right),x=-2\mathrm{Pi}..2\mathrm{Pi},'\mathrm{adaptive}'=\mathrm{true}\right)$
 > $\mathrm{plot}\left(\mathrm{sin}\left(100x\right)+\mathrm{cos}\left(10x\right),x=-2\mathrm{Pi}..2\mathrm{Pi}\right)$
 > $\mathrm{plot}\left(\sqrt{\mathrm{sin}\left({x}^{2}\right)},x=-5..5,'\mathrm{adaptive}'=\mathrm{false},'\mathrm{numpoints}'=10\right)$
 > $\mathrm{plot}\left(\sqrt{\mathrm{sin}\left({x}^{2}\right)},x=-5..5,'\mathrm{adaptive}'=2,'\mathrm{numpoints}'=10\right)$
 > $\mathrm{plot}\left(\sqrt{\mathrm{sin}\left({x}^{2}\right)},x=-5..5,'\mathrm{adaptive}'=\mathrm{true},'\mathrm{numpoints}'=10\right)$
 > $\mathrm{plot}\left(\sqrt{\mathrm{sin}\left({x}^{2}\right)},x=-5..5\right)$
 > $\mathrm{plot}\left({x}^{2}+1+0.0125\mathrm{ln}\left(\left|1-3\left(x-1\right)\right|\right),x=1..1.4,'\mathrm{adaptive}'=\mathrm{true}\right)$
 > $\mathrm{plot}\left({x}^{2}+1+0.0125\mathrm{ln}\left(\left|1-3\left(x-1\right)\right|\right),x=1..1.4\right)$

Compatibility

 • The adaptive option was updated in Maple 2022.