linear sym - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


ODEs Having Linear Symmetries

 

Description

Examples

Description

• 

The general forms of ODEs having one of the following linear symmetries

[xi=a+b*x, eta=0], [xi=a+b*y, eta=0], [xi=0, eta=c+d*x], [xi=0, eta=c+d*y]:

  

where the infinitesimal symmetry generator is given by:

G := f -> xi*diff(f,x) + eta*diff(f,y);

Gf→ξxf+ηyf

(1)
  

are given by:

ode[1] := DEtools[equinv]([xi=a+b*x, eta=0], y(x), 2);

ode1ⅆ2ⅆx2yx=f__1yx,ⅆⅆxyxbx+abx+a2

(2)

ode[2] := DEtools[equinv]([xi=a+b*y, eta=0], y(x), 2);

ode2ⅆ2ⅆx2yx=f__1yx,ⅆⅆxyxbxbyxaⅆⅆxyxbyx+aⅆⅆxyx3byx+a3

(3)

ode[3] := DEtools[equinv]([xi=0, eta=c+d*x], y(x), 2);

ode3ⅆ2ⅆx2yx=f__1x,ⅆⅆxyxdx+ⅆⅆxyxcdyxxd+c

(4)

ode[4] := DEtools[equinv]([xi=0, eta=c+d*y], y(x), 2);

ode4ⅆ2ⅆx2yx=f__1x,ⅆⅆxyxdyx+cdyx+f__1x,ⅆⅆxyxdyx+cc

(5)
  

Although the symmetries of these families of ODEs can be determined in a direct manner (using symgen), the simplicity of their pattern motivated us to have separate routines for recognizing them.

Examples

withDEtools,equinv,odeadvisor,symgen:

odeadvisorode1

_2nd_order,_with_linear_symmetries

(6)

odeadvisorode2

_2nd_order,_with_linear_symmetries

(7)

odeadvisorode3

_2nd_order,_with_linear_symmetries

(8)

odeadvisorode4

_2nd_order,_with_linear_symmetries

(9)

As an example that can be solved by the related routine, consider

ode5equinv0,y,x,0,yx,2

ode5ⅆ2ⅆx2yx=f__1ⅆⅆxyxxyxyxx2

(10)

dsolveode5

yx=ⅇ` `lnxRootOf` `_Z1_a+_a2f__1_aⅆ_a_b+c__1ⅆ_b+c__2

(11)

See Also

DEtools

odeadvisor

dsolve,Lie

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types