 geometry - Maple Programming Help

Home : Support : Online Help : Mathematics : Geometry : 2-D Euclidean : Triangle Geometry : geometry/orthocenter

geometry

 orthocenter
 compute the orthocenter of a triangle

 Calling Sequence orthocenter(H, g)

Parameters

 H - the name of the orthocenter g - triangle

Description

 • The orthocenter of triangle g is the point of intersection of the three altitudes of g
 • For a detailed description of the orthocenter H, use the routine detail (i.e., detail(H))
 • Note that the routine only works if the vertices of the triangle are known.
 • The command with(geometry,orthocenter) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{geometry}\right):$
 > $\mathrm{ps}≔\mathrm{point}\left(A,0,0\right),\mathrm{point}\left(B,2,0\right),\mathrm{point}\left(C,1,3\right):$
 > $\mathrm{triangle}\left(\mathrm{ABC},\left[\mathrm{ps}\right]\right)$
 ${\mathrm{ABC}}$ (1)
 > $\mathrm{orthocenter}\left(H,\mathrm{ABC}\right)$
 ${H}$ (2)
 > $\mathrm{coordinates}\left(H\right)$
 $\left[{1}{,}\frac{{1}}{{3}}\right]$ (3)