Calculus1 Integration Apps - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Calculus 1: Applications of Integration

The Student[Calculus1] package contains four routines that can be used to both work with and visualize the concepts of function averages, arc lengths, and volumes and surfaces of revolution.  This worksheet demonstrates this functionality.

 

For further information about any command in the Calculus1 package, see the corresponding help page.  For a general overview, see Calculus1.

Getting Started

While any command in the package can be referred to using the long form, for example, Student[Calculus1][DerivativePlot],  it is easier, and often clearer, to load the package, and then use the short form command names.

restart

withStudentCalculus1:

The following sections show how the routines work.  In some cases, examples show to use these visualization routines in conjunction with the single-stepping Calculus1 routines.

Function Average

The average value of a function fx on the interval a,b is:

FunctionAveragefx,x=a..b,output=integral

Intfx,x=a..bba

(1.1)

FunctionAveragesinx+x,x=0..2π,output=plot

The integral output option can be used with the single-stepping functionality.

FunctionAveragesinx+x,x=0..2π,output=integral

12Intsinx+x,x=0..2ππ

(1.2)

Rulesum

CALCULUS1OBJECT1,4,,x=12Intsinx,x=0..2π+Intx,x=0..2ππ

(1.3)

Rulesin

CALCULUS1OBJECT1,4,,x=12Intx,x=0..2ππ

(1.4)

Rulepower

02πsinx+xⅆx2π=π

(1.5)

You can also compute the average value of a function using the FunctionAverageTutor command.

FunctionAverageTutor

Volume of Revolution

Given a function fx, rotate its graph around the x-axis and determine the volume of the resulting solid.  The red line represents the value of the function.

VolumeOfRevolutionsinx+2,x=0..4π,output=plot

The volume of this 3-D shape is given by the integral:

VolumeOfRevolutionsinx+2,x=0..4π,output=integral

Intπsinx+22,x=0..4π

(2.1)

value

18π2

(2.2)

Similarly, rotate the graph of fx around the y-axis; in this case, determine the volume under the resulting surface. (Note: The function f should increase or decrease monotonically.)

VolumeOfRevolutioncosx,x=π2..π,output=plot,axis=vertical

This volume is given by:

VolumeOfRevolutioncosx,x=π2..π,output=integral,axis=vertical

Int2πxcosx,x=12π..π

(2.3)

value

π2+2π

(2.4)

You can also determine the volume between two functions rotated around an axis.  Consider the two expressions x14+1 and x on the interval 1,2.

VolumeOfRevolutionx14+1,x,x=1..2,output=plot

VolumeOfRevolutionx14+1,x,x=1..2,output=plot,axis=vertical

VolumeOfRevolutionx14+1,x,x=1..2

37π45

(2.5)

VolumeOfRevolutionx14+1,x,x=1..2,axis=vertical

14π15

(2.6)

You can also compute the volume of revolution and display the resulting solid using the VolumeOfRevolutionTutor command.

VolumeOfRevolutionTutor

Arc Length

Given a function fx, determine the length of the curve (or arc) from the point (a,fa) to the point (b,fb).  This value is given by the formula:

ArcLengthfx,x=a..b,output=integral

Intdifffx,x2+1,x=a..b

(3.1)

When calling ArcLength with the plot output option, three curves are plotted:

  1.  The expression (in red by default),

  2.  The integrand (in blue by default),

  3.  The expression (in green by default) axⅆⅆsfs2+1ⅆs

and thus, the value of the green line at the point b is the total arc length of the curve.

ArcLength2sinx,x=0..2π,output=plot

In general, the resulting integrand is difficult to solve.

You can also computer arc length using the ArcLengthTutor command.

ArcLengthTutor

Simple Example Using Single Stepping

ArcLengthx2lnx8,x=1..3,output=integral

Int1816x2+1x,x=1..3

(3.1.1)

simplify

18Int16x2+1x,x=1..3

(3.1.2)

Rulerewrite,16 x2+1x=16 x+1x

CALCULUS1OBJECT2,4,,x=18Int16x+1x,x=1..3

(3.1.3)

Rulesum

CALCULUS1OBJECT2,4,4,,x=18Int16x,x=1..3+18Int1x,x=1..3

(3.1.4)

Rule`c*`

CALCULUS1OBJECT2,4,4,4,,x=2Intx,x=1..3+18Int1x,x=1..3

(3.1.5)

Rule`^`

CALCULUS1OBJECT2,4,4,,x=8+18Int1x,x=1..3

(3.1.6)

Rule`^`

1316x2+1xⅆx8=8+ln38

(3.1.7)

Advanced Example Using Hyperbolic Cosine

One special case is the hyperbolic cosine function, which is defined as:
                coshx=ⅇx+ⅇx2 
For example, this function gives the shape of a wire hanging from two points.

plotcoshx,x=1..1.1

In this special case, the length of the curve coshx is equal to the integral of coshx.

ArcLengthcoshx,x=1.0..1.1

2.510848664

(3.2.1)

∫1.01.1coshxⅆx

2.510848664

(3.2.2)

Surface of Revolution

Given a function fx, rotate its graph around the x-axis and determine the area of the resulting surface.  The red line represents the value of the function.

SurfaceOfRevolutionsinx+2,x=0..4π,output=plot

The area of this surface is given by:

SurfaceOfRevolutionsinx+2,x=0..4π,output=integral

Int2πsinx+21+cosx2,x=0..4π

(4.1)

Another example:

SurfaceOfRevolutionⅇx,x=0..1,output=integral

Int2πexpx1+expx2,x=0..1

(4.2)

value

πln1+2π2+π1+ⅇ2ⅇ+πarcsinhⅇ

(4.3)

Similarly, rotate the graph of fx around the y-axis and determine the area of the resulting surface.

SurfaceOfRevolutionsinx+2,x=2π..4π,output=plot,axis=vertical

When determining the area of the surface of revolution around the x- or y-axis, the integrand is similar. Only the term multiplying the square root is different.

SurfaceOfRevolutionfx,x=a..b,output=integral

Int2πabsfxdifffx,x2+1,x=a..b

(4.4)

SurfaceOfRevolutionfx,x=a..b,output=integral,axis=vertical

Int2πabsxdifffx,x2+1,x=a..b

(4.5)

You can also compute and view the surface of revolution using the SurfaceOfRevolutionTutor command.

SurfaceOfRevolutionTutor

Negative Values

The interpretation of negative values requires some explanation.  When rotating a function around the x-axis, a negative value of the function is interpreted as a negative surface value.

SurfaceOfRevolutionsinx,x=0..2π

4πln1+2+4π2

(4.1.1)

The absolute value function can be used to get the expected value.

SurfaceOfRevolutionsinx,x=0..2π

2πln1+2+4π22πln21

(4.1.2)

Similarly, when the graph is rotated around the y-axis, negative x values are interpreted as negative surface values.

SurfaceOfRevolutioncoshx,x=π..π,axis=vertical

2ⅇππ22ⅇππ22πⅇπ2πⅇπ+4π

(4.1.3)

If the function is symmetric, the integral must be calculated from the origin. Otherwise, the surface area is added twice.

SurfaceOfRevolutioncoshx,x=0..π,axis=vertical

2π+ⅇππ2ⅇππ2πⅇππⅇπ

(4.1.4)

When the function is not symmetric, the sum of each positive branch must be added.

SurfaceOfRevolutionⅇx,x=0..π,axis=vertical+SurfaceOfRevolutionⅇx,x=0..π,axis=vertical

int2πx1+expx2,x=0..π+int2πx1+expx2,x=0..π

(4.1.5)

SurfaceOfRevolutionⅇx,x=π..π,axis=vertical,output=plot

Main: Visualization

Previous: Integration