WhittakerM
The Whittaker M function
WhittakerW
The Whittaker W function
Calling Sequence
Parameters
Description
Examples
References
WhittakerM(mu, nu, z)
WhittakerW(mu, nu, z)
mu
-
algebraic expression
nu
z
The Whittaker functions WhittakerM(mu, nu, z) and WhittakerW(mu, nu, z) solve the differential equation
y''+−14+μz+14−ν2z2⁢y=0
They can be defined in terms of the hypergeometric and Kummer functions as follows:
WhittakerM⁡μ,ν,z=ⅇ−12⁢z⁢z12+ν⁢hypergeom⁡12+ν−μ,1+2⁢ν,z
WhittakerW⁡μ,ν,z=ⅇ−12⁢z⁢z12+ν⁢KummerU⁡12+ν−μ,1+2⁢ν,z
WhittakerM⁡1,2,0.5
0.1606687379
∂∂z⁢WhittakerW⁡μ,ν,z
12−μz⁢WhittakerW⁡μ,ν,z−WhittakerW⁡μ+1,ν,zz
series⁡WhittakerM⁡2,3,x,x
x72−2⁢x927+23⁢x112448+O⁡x132
series⁡WhittakerW⁡−12,−13,x,x
3⁢3⁢Γ⁡232⁢x162⁢π−π⁢3⁢x56Γ⁡232+9⁢3⁢Γ⁡232⁢x764⁢π−3⁢π⁢3⁢x11610⁢Γ⁡232+9⁢3⁢Γ⁡232⁢x13616⁢π−3⁢π⁢3⁢x17640⁢Γ⁡232+27⁢3⁢Γ⁡232⁢x196224⁢π−9⁢π⁢3⁢x236880⁢Γ⁡232+27⁢3⁢Γ⁡232⁢x2561792⁢π−9⁢π⁢3⁢x2967040⁢Γ⁡232+81⁢3⁢Γ⁡232⁢x31646592⁢π−27⁢π⁢3⁢x356239360⁢Γ⁡232+O⁡x376
simplify⁡WhittakerW⁡μ+73,ν,x
−ν+μ−16⁢x−2⁢μ−83⁢μ−16−ν⁢WhittakerW⁡μ−23,ν,x+5⁢μ2+−4⁢x+253⁢μ+x2−ν2−10⁢x3+8936⁢WhittakerW⁡μ+13,ν,x
Abramowitz, M., and Stegun I. Handbook of Mathematical Functions. New York: Dover Publications.
Luke, Y. The Special Functions and Their Approximations. Vol 1. Academic Press, 1969.
See Also
hypergeom
inifcns
KummerU
Download Help Document
What kind of issue would you like to report? (Optional)