electric capacitance - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Units of Electric Capacitance

Description

 • Electric capacitance has the dimension time to the fourth electric current squared per length squared mass. The SI derived unit of electric capacitance is the farad, which is defined as a volt second per square meter.
 • Maple knows the units of electric capacitance listed in the following table.

 Name Symbols Context Alternate Spellings Prefixes farad F SI * farads SI abfarad abF EMU * abfarads SI statfarad statF ESU * statfarads SI jar standard * jars SI

 An asterisk ( * ) indicates the default context, an at sign (@) indicates an abbreviation, and under the prefixes column, SI indicates that the unit takes all SI prefixes, IEC indicates that the unit takes IEC prefixes, and SI+ and SI- indicate that the unit takes only positive and negative SI prefixes, respectively.  Refer to a unit in the Units package by indexing the name or symbol with the context, for example, farad[SI] or abF[EMU]; or, if the context is indicated as the default, by using only the unit name or symbol, for example, farad or abF.
 The units of electric capacitance are defined as follows.
 An abfarad is defined as $1.×{10}^{9}$ farads and is energy-equivalent to the unit second squared per centimeter ($\frac{{s}^{2}}{\mathrm{cm}}$).
 A statcoulomb is defined as $\frac{10000.}{{c}^{2}}$ farad where c is the magnitude of the speed of light, and is energy-equivalent to the unit centimeter (cm).
 A jar is defined as $1.111111111×{10}^{-9}$ farad and is approximately energy-equivalent to $10$ meters.

Examples

 > $\mathrm{convert}\left('\mathrm{farad}','\mathrm{dimensions}','\mathrm{base}'=\mathrm{true}\right)$
 $\frac{{{\mathrm{electric_current}}}^{{2}}{}{{\mathrm{time}}}^{{4}}}{{{\mathrm{length}}}^{{2}}{}{\mathrm{mass}}}$ (1)
 > $\mathrm{convert}\left(8.854187817{10}^{-12},'\mathrm{units}','F','\mathrm{abF}'\right)$
 ${8.854187817}{×}{{10}}^{{-21}}$ (2)
 > $\mathrm{convert}\left(8.854187817{10}^{-12},'\mathrm{units}','F',\frac{{'s'}^{2}}{'\mathrm{cm}'},'\mathrm{energy}'\right)$
 ${8.854187817}{×}{{10}}^{{-21}}$ (3)
 > $\mathrm{convert}\left(8.854187817{10}^{-12},'\mathrm{units}','F','\mathrm{statF}'\right)$
 ${7.957747154}$ (4)
 > $\mathrm{convert}\left(8.854187817{10}^{-12},'\mathrm{units}','F','\mathrm{cm}','\mathrm{energy}'\right)$
 ${7.957747154}$ (5)
 > $\mathrm{convert}\left(8.854187817{10}^{-12},'\mathrm{units}','F','\mathrm{jar}'\right)$
 ${0.007968769035}$ (6)
 > $\mathrm{convert}\left(1,'\mathrm{units}','\mathrm{jar}',1000'\mathrm{cm}','\mathrm{energy}'\right)$
 $\frac{{22468879468420441}}{{22500000000000000}}$ (7)
 > $\mathrm{evalf}\left(\right)$
 ${0.9986168653}$ (8)