Center of Mass for 3-D Region in Cylindrical Coordinates
Description
Determine r&conjugate0;, θ&conjugate0;, and z&conjugate0;, the center of mass coordinates for a 3-D region in cylindrical coordinates.
Density:
z
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
r
z2r,θ
1
r1θ
0
r2θ
a
b
π3
13⁢π
Moments ÷ Mass:
Inert Integral - dz dr dθ
StudentMultivariateCalculusCenterOfMass,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫013⁢π∫01∫r1cos⁡θ⁢r2⁢zⅆzⅆrⅆθ∫013⁢π∫01∫r1r⁢zⅆzⅆrⅆθ,∫013⁢π∫01∫r1sin⁡θ⁢r2⁢zⅆzⅆrⅆθ∫013⁢π∫01∫r1r⁢zⅆzⅆrⅆθ,∫013⁢π∫01∫r1z2⁢rⅆzⅆrⅆθ∫013⁢π∫01∫r1r⁢zⅆzⅆrⅆθ
Explicit values for r&conjugate0;, θ&conjugate0;, and z&conjugate0;, the center of mass given in cylindrical coordinates:
StudentMultivariateCalculusCenterOfMass,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
85⁢π,16⁢π,45
Commands Used
Student[MultivariateCalculus][CenterOfMass]
Related Task Templates
Multivariate Calculus > Multiple Integration > Cylindrical
See Also
Student[MultivariateCalculus, Student[MultivariateCalculus][MultiInt]
Download Help Document
What kind of issue would you like to report? (Optional)