Chapter 6: Applications of Double Integration
Section 6.4: Average Value
Example 6.4.10
Find the average value of over , the region that is inside the circle but outside the limaçon . See Example 5.7.5.
Solution
Mathematical Solution
Figure 6.4.10(a) shows the function drawn over the region . The integral in the numerator for the average value is over the shaded region. The average value itself is then
Figure 6.4.10(a) Graph of
Maple Solution - Interactive
The simplest approach to finding the average value in polar coordinates is to use the task template shown in Table 6.4.10(a).
Tools≻Tasks≻Browse:
Calculus - Multivariate≻Integration≻Average Value≻Polar
Average Value of a Function in Polar Coordinates
Integrand
Region:
Inert Integral:
(Note automatic insertion of Jacobian.)
Value
Table 6.4.10(a) In polar coordinates, computation of average value by task template
A solution from first principles is implemented in Table 6.4.10(b).
Initialize
Context Panel: Assign name
Calculate the average value of
Calculus palette: Iterated double-integral template
Context Panel: Evaluate and Display Inline
Context Panel: Expand≻Expand
Context Panel: Approximate≻10 (digits)
=
Table 6.4.10(b) From first principles and in polar coordinates, calculation of average value
Maple Solution - Coded
Define .
Compute the average value of
Apply the FunctionAverage command from the Student MultivariateCalculus package.
Use the expand and evalf commands to modify the form of the average value.
<< Previous Example Section 6.4 Next Section >>
© Maplesoft, a division of Waterloo Maple Inc., 2025. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
For more information on Maplesoft products and services, visit www.maplesoft.com
Download Help Document