Example 3-8-14 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim



Chapter 3: Applications of Differentiation



Section 3.8: Optimization



Example 3.8.14



 • Find the length of the longest ladder that can be carried horizontally around the corner of the passageway shown in Figure 3.8.14(a). (The horizontal and vertical segments, corridors of widths $b$ and $a$, respectively, are at right angles to each other.)

 • Hint: The longest ladder that can be carried around the corner at point $B$ is the shortest line segment from $A$ to $C$ that also passes through $B$.

 • Hint: Angles $\mathrm{ABE}$ and $\mathrm{BCF}$ are equal because they are corresponding interior angles of the parallel lines $\mathrm{BE}$ and $\mathrm{CF}$.

 > p1:=plot([[0,0],[0,5],[6,5]],style=line,color=black): p2:=plot([[2,0],[2,13/5],[6,13/5]],style=line,color=black): p3:=plot([[[0,1],[2,1]],[[5,13/5],[5,5]]],style=line,linestyle=dot,color=red): p4:=plot([[0,1],[5,5]],style=line,color=green): p5:=plots:-textplot({[-.2,1,typeset(A)],[1.9,2.8,typeset(B)],[5,5.2,typeset(C)],[5,12/5,typeset(F)],[2.2,1,typeset(E)]},font=[default,bold,12]): p6:=plots:-textplot({[1.8,2.2,typeset(theta)],[4.8,4.6,typeset(theta)]},font=[default,12]): p7:=plots:-textplot({[1,.8,typeset(a)],[5.2,3.7,typeset(b)]},font=[default,12]): plots:-display(p||(1..7),scaling=constrained,view=[-.5..6,0..5.2],axes=none);

 >

Figure 3.8.14(a)   Ladder in right-angled corridor







© Maplesoft, a division of Waterloo Maple Inc., 2024. All rights reserved. This product is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

For more information on Maplesoft products and services, visit www.maplesoft.com