ODE Steps for Cauchy-Euler Equations
Overview
Examples
This help page gives a few examples of using the command ODESteps to solve Cauchy-Euler equations.
See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.
with⁡Student:-ODEs:
ode1≔x2⁢diff⁡y⁡x,x,x−4⁢x⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode1≔x2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0
ODESteps⁡ode1
Let's solvex2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0•Highest derivative means the order of the ODE is2ⅆ2ⅆx2y⁡x•Isolate 2nd derivativeⅆ2ⅆx2y⁡x=−2⁢y⁡xx2+4⁢ⅆⅆxy⁡xx•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2y⁡x−4⁢ⅆⅆxy⁡xx+2⁢y⁡xx2=0•Multiply by denominators of the ODEx2⁢ⅆ2ⅆx2y⁡x−4⁢x⁢ⅆⅆxy⁡x+2⁢y⁡x=0•Make a change of variablest=ln⁡x▫Substitute the change of variables back into the ODE◦Calculate the 1st derivative ofywith respect tox, using the chain ruleⅆⅆty⁡t=ⅆⅆxy⁡x◦Compute derivativeⅆⅆty⁡t=ⅆⅆty⁡tx◦Calculate the 2nd derivative ofywith respect tox, using the chain ruleⅆ2ⅆt2y⁡t=ⅆ2ⅆx2y⁡x◦Compute derivativeⅆ2ⅆt2y⁡t=−ⅆⅆty⁡tx2+ⅆ2ⅆt2y⁡tx2Substitute the change of variables back into the ODEx2⁢−ⅆⅆty⁡tx2+ⅆ2ⅆt2y⁡tx2−4⁢ⅆⅆty⁡t+2⁢y⁡t=0•Simplify−5⁢ⅆⅆty⁡t+ⅆ2ⅆt2y⁡t+2⁢y⁡t=0•Characteristic polynomial of ODEr2−5⁢r+2=0•Use quadratic formula to solve forrr=5±2•Roots of the characteristic polynomialr=52−172,52+172•1st solution of the ODEy1⁡t=ⅇ52−172⁢t•2nd solution of the ODEy2⁡t=ⅇ52+172⁢t•General solution of the ODEy⁡t=_C1⁢y1⁡t+_C2⁢y2⁡t•Substitute in solutionsy⁡t=_C1⁢ⅇ52−172⁢t+_C2⁢ⅇ52+172⁢t•Change variables back usingt=ln⁡xy⁡x=_C1⁢ⅇ52−172⁢+_C2⁢ⅇ52+172⁢•Simplifyy⁡x=_C1⁢ⅇ−−5+17⁢2+_C2⁢ⅇ5+17⁢2
ode2≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode2≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
ODESteps⁡ode2
Let's solvex3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0•Highest derivative means the order of the ODE is3ⅆ3ⅆx3y⁡x•Isolate 3rd derivativeⅆ3ⅆx3y⁡x=6⁢y⁡xx3−3⁢ⅆ2ⅆx2y⁡x⁢x−2⁢ⅆⅆxy⁡xx2•Group terms withy⁡xon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ3ⅆx3y⁡x−6⁢y⁡xx3+3⁢ⅆ2ⅆx2y⁡x⁢x−2⁢ⅆⅆxy⁡xx2=0•Multiply by denominators of the ODEx3⁢ⅆ3ⅆx3y⁡x−6⁢y⁡x+3⁢x⁢ⅆ2ⅆx2y⁡x⁢x−2⁢ⅆⅆxy⁡x=0•Make a change of variablest=ln⁡x▫Substitute the change of variables back into the ODE◦Calculate the 1st derivative ofywith respect tox, using the chain ruleⅆⅆty⁡t=ⅆⅆxy⁡x◦Compute derivativeⅆⅆty⁡t=ⅆⅆty⁡tx◦Calculate the 2nd derivative ofywith respect tox, using the chain ruleⅆ2ⅆt2y⁡t=ⅆ2ⅆx2y⁡x◦Compute derivativeⅆ2ⅆt2y⁡t=−ⅆⅆty⁡tx2+ⅆ2ⅆt2y⁡tx2◦Calculate the 3rd derivative ofywith respect tox, using the chain ruleⅆ3ⅆt3y⁡t=ⅆ3ⅆx3y⁡x◦Compute derivativeⅆ3ⅆt3y⁡t=2⁢ⅆⅆty⁡tx3−3⁢ⅆ2ⅆt2y⁡tx3+ⅆ3ⅆt3y⁡tx3Substitute the change of variables back into the ODEx3⁢2⁢ⅆⅆty⁡tx3−3⁢ⅆ2ⅆt2y⁡tx3+ⅆ3ⅆt3y⁡tx3−6⁢y⁡t+3⁢x⁢−ⅆⅆty⁡tx2+ⅆ2ⅆt2y⁡tx2⁢x−2⁢ⅆⅆty⁡tx=0•Simplify−7⁢ⅆⅆty⁡t+ⅆ3ⅆt3y⁡t−6⁢y⁡t=0▫Convert linear ODE into a system of first order ODEs◦Define new variabley1⁡ty1⁡t=y⁡t◦Define new variabley2⁡ty2⁡t=ⅆⅆty⁡t◦Define new variabley3⁡ty3⁡t=ⅆ2ⅆt2y⁡t◦Isolate forⅆⅆty3⁡tusing original ODEⅆⅆty3⁡t=7⁢y2⁡t+6⁢y1⁡tConvert linear ODE into a system of first order ODEsy2⁡t=ⅆⅆty1⁡t,y3⁡t=ⅆⅆty2⁡t,ⅆⅆty3⁡t=7⁢y2⁡t+6⁢y1⁡t•Define vectory→⁡t=y3⁡ty1⁡ty2⁡t•System to solveⅆⅆty→⁡t=A·y→⁡t•To solve the system find eigenvalues and eigenvectors ofAA=067001100•Eigenpairs of A−1,−1−11,3,3131,−2,−2−121•Consider eigenpair−1,−1−11•Solution to homogeneous system from eigenpairy→1⁡t=•Consider eigenpair3,3131•Solution to homogeneous system from eigenpairy→2⁡t=•Consider eigenpair−2,−2−121•Solution to homogeneous system from eigenpairy→3⁡t=•General solution to the system of ODEsy→⁡t=_C1⁢y→1⁡t+_C2⁢y→2⁡t+_C3⁢y→3⁡t•Substitute solutions into the general solutiony→⁡t=++•First component of the vector is the solution to the ODEy⁡t=−−3⁢_C2⁢ⅇ5⁢t+_C1⁢ⅇt+2⁢_C3⁢ⅇ−2⁢t•Change variables back usingt=ln⁡xy⁡x=−−3⁢_C2⁢ⅇ5⁢+_C1⁢ⅇ+2⁢_C3⁢ⅇ−2⁢•Simplifyy⁡x=3⁢_C2⁢x3−_C1x−2⁢_C3x2
See Also
diff
Int
Student
Student[ODEs]
Student[ODEs][ODESteps]
Download Help Document
What kind of issue would you like to report? (Optional)