CauchyEulerEquations - Maple Help

Online Help

All Products    Maple    MapleSim


ODE Steps for Cauchy-Euler Equations

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve Cauchy-Euler equations.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1x2diffyx,x,x4xdiffyx,x+2yx=0

ode1x2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0

(1)

ODEStepsode1

Let's solvex2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=2yxx2+4ⅆⅆxyxxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx4ⅆⅆxyxx+2yxx2=0Multiply by denominators of the ODEx2ⅆ2ⅆx2yx4xⅆⅆxyx+2yx=0Make a change of variablest=lnxSubstitute the change of variables back into the ODECalculate the 1st derivative ofywith respect tox, using the chain ruleⅆⅆtyt=ⅆⅆxyxCompute derivativeⅆⅆtyt=ⅆⅆtytxCalculate the 2nd derivative ofywith respect tox, using the chain ruleⅆ2ⅆt2yt=ⅆ2ⅆx2yxCompute derivativeⅆ2ⅆt2yt=ⅆⅆtytx2+ⅆ2ⅆt2ytx2Substitute the change of variables back into the ODEx2ⅆⅆtytx2+ⅆ2ⅆt2ytx24ⅆⅆtyt+2yt=0Simplify5ⅆⅆtyt+ⅆ2ⅆt2yt+2yt=0Characteristic polynomial of ODEr25r+2=0Use quadratic formula to solve forrr=5±2Roots of the characteristic polynomialr=52172,52+1721st solution of the ODEy1t=ⅇ52172t2nd solution of the ODEy2t=ⅇ52+172tGeneral solution of the ODEyt=_C1y1t+_C2y2tSubstitute in solutionsyt=_C1ⅇ52172t+_C2ⅇ52+172tChange variables back usingt=lnxyx=_C1ⅇ52172+_C2ⅇ52+172Simplifyyx=_C1ⅇ5+172+_C2ⅇ5+172

(2)

ode2x3diffyx,x,x,x+3x2diffyx,x,x6xdiffyx,x6yx=0

ode2x3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx6xⅆⅆxyx6yx=0

(3)

ODEStepsode2

Let's solvex3ⅆ3ⅆx3yx+3x2ⅆ2ⅆx2yx6xⅆⅆxyx6yx=0Highest derivative means the order of the ODE is3ⅆ3ⅆx3yxIsolate 3rd derivativeⅆ3ⅆx3yx=6yxx33ⅆ2ⅆx2yxx2ⅆⅆxyxx2Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ3ⅆx3yx6yxx3+3ⅆ2ⅆx2yxx2ⅆⅆxyxx2=0Multiply by denominators of the ODEx3ⅆ3ⅆx3yx6yx+3xⅆ2ⅆx2yxx2ⅆⅆxyx=0Make a change of variablest=lnxSubstitute the change of variables back into the ODECalculate the 1st derivative ofywith respect tox, using the chain ruleⅆⅆtyt=ⅆⅆxyxCompute derivativeⅆⅆtyt=ⅆⅆtytxCalculate the 2nd derivative ofywith respect tox, using the chain ruleⅆ2ⅆt2yt=ⅆ2ⅆx2yxCompute derivativeⅆ2ⅆt2yt=ⅆⅆtytx2+ⅆ2ⅆt2ytx2Calculate the 3rd derivative ofywith respect tox, using the chain ruleⅆ3ⅆt3yt=ⅆ3ⅆx3yxCompute derivativeⅆ3ⅆt3yt=2ⅆⅆtytx33ⅆ2ⅆt2ytx3+ⅆ3ⅆt3ytx3Substitute the change of variables back into the ODEx32ⅆⅆtytx33ⅆ2ⅆt2ytx3+ⅆ3ⅆt3ytx36yt+3xⅆⅆtytx2+ⅆ2ⅆt2ytx2x2ⅆⅆtytx=0Simplify7ⅆⅆtyt+ⅆ3ⅆt3yt6yt=0Convert linear ODE into a system of first order ODEsDefine new variabley1ty1t=ytDefine new variabley2ty2t=ⅆⅆtytDefine new variabley3ty3t=ⅆ2ⅆt2ytIsolate forⅆⅆty3tusing original ODEⅆⅆty3t=7y2t+6y1tConvert linear ODE into a system of first order ODEsy2t=ⅆⅆty1t,y3t=ⅆⅆty2t,ⅆⅆty3t=7y2t+6y1tDefine vectoryt=y3ty1ty2tSystem to solveⅆⅆtyt=A·ytTo solve the system find eigenvalues and eigenvectors ofAA=067001100Eigenpairs of A−1,−1−11,3,3131,−2,−2121Consider eigenpair−1,−1−11Solution to homogeneous system from eigenpairy1t=Consider eigenpair3,3131Solution to homogeneous system from eigenpairy2t=Consider eigenpair−2,−2121Solution to homogeneous system from eigenpairy3t=General solution to the system of ODEsyt=_C1y1t+_C2y2t+_C3y3tSubstitute solutions into the general solutionyt=++First component of the vector is the solution to the ODEyt=3_C2ⅇ5t+_C1ⅇt+2_C3ⅇ2tChange variables back usingt=lnxyx=3_C2ⅇ5+_C1ⅇ+2_C3ⅇ2Simplifyyx=3_C2x3_C1x2_C3x2

(4)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]