ImplicitDiffSolution - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[Calculus1]

  

ImplicitDiffSolution

  

generate steps for implicit differentiation

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ImplicitDiffSolution( f, y, x, opts )

Parameters

f

-

algebraic equation

y

-

names or function of dependent variable

x

-

name of dependent variable

opts

-

(optional) options of the form keyword=value, where keyword is one of output, displaystyle, or animated

Description

• 

The ImplicitDiffSolution command computes the partial derivative of the function, y with respect to x, showing the steps required to make the computation. The input f defines y as a function of x implicitly. It must be an equation in x and y or an algebraic expression, which is understood to be equated to zero.

• 

All other names, which appear in the input f and the derivative variable(s) x and are not of type constant, are treated as independent variables.

• 

Optional arguments output, displaystyle, and animated can be passed to control the style of output.  These options are described in Student:-Basics:-OutputStepsRecord. The return value is controlled by the output option.

• 

This function is part of the Student:-Calculus1 package.

Examples

withStudent:-Calculus1:

ImplicitDiffSolutionx2+y3=1,y,x

Implicit Differentiation Stepsy3+x2=1Rewriteyas a functionyx:yx3+x2=1Differentiate the left sideⅆⅆxyx3+x21. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx22. Apply thepowerrule to the termⅆⅆxx2Recall the definition of thepowerrulexx=x1This means:ⅆⅆxx2=So,ⅆⅆxx2=We can rewrite the derivative as:3. Apply thechainrule to the termyx3Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgxOutside functionfv=v3Inside functiongx=yxDerivative of outside functionⅆⅆvfv=3v2Apply compositionf'gx=3yx2Derivative of inside functionⅆⅆxgx=ⅆⅆxyxPut it all togetherⅆⅆxfgxⅆⅆxgx=This gives:The final result isDifferentiate the right sideⅆⅆx11. Apply theconstantrule to the termⅆⅆx1Recall the definition of theconstantruleⅆCⅆx=0This means:ⅆⅆx1=0We can now rewrite the derivative as:0Rewriteⅆⅆxyxasy'and solve fory'=0Subtract2xfrom both sides=Simplify=Divide both sides by3y2=Simplifyy'=Solutiony'=2x3y2

(1)

ImplicitDiffSolutionax3y2yz=z2,yx,z,x

Implicit Differentiation Stepsax3y2yz=z2Rewriteyas a functionyx,z:ax3yx,z2yx,zz=z2Differentiate the left sidexax3yx,z2yx,zz1. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=ax3yx,zgx=2yx,zzThis gives:xax3yx,z+x2yx,zz2. Apply theconstant multiplerule to the termxax3yx,zRecall the definition of theconstant multiplerulexfx=ⅆⅆxfxThis means:xax3yx,z=We can rewrite the derivative as:axx3yx,z+x2yx,zz3. Apply theproductruleRecall the definition of theproductruleⅆⅆxfxgx=ⅆⅆxfxgx+fxⅆⅆxgxfx=x3gx=yx,zThis gives:aⅆⅆxx3yx,z+x3xyx,z+x2yx,zz4. Apply thepowerrule to the termⅆⅆxx3Recall the definition of thepowerrulexx=x1This means:ⅆⅆxx3=We can rewrite the derivative as:5. Apply theconstant multiplerule to the termx2yx,zzRecall the definition of theconstant multiplerulexfx=ⅆⅆxfxThis means:x2yx,zz=We can rewrite the derivative as:a3x2yx,z+x3xyx,z+2xyx,zzThe final result isDifferentiate the right sidexz21. Apply theconstantrule to the termxz2Recall the definition of theconstantruleⅆCⅆx=0This means:xz2=0We can now rewrite the derivative as:0Rewritexyx,zasy'and solve fory'=0Distributive multiply=0Multiply fraction=0Find common denominator=0Sum over common denominator=0Distributive multiply=0Multiply rhs by denominator of lhs=Simplify=0Subtractz3ax2yfrom both sides=Simplify=Factor=Divide both sides byax3z2=Simplifyy'=Solutiony'=3ax2yzax3z2

(2)

Output can be shortened by declaring some rules to be understood

Understanddiff,constant,power,constantmultiple

Diff=constant,power,constantmultiple

(3)

ImplicitDiffSolutiony3+x2=1,y,x

Implicit Differentiation Stepsy3+x2=1Rewriteyas a functionyx:yx3+x2=1Differentiate the left sideⅆⅆxyx3+x21. Apply thesumruleRecall the definition of thesumruleⅆⅆxfx+gx=ⅆⅆxfx+ⅆⅆxgxfx=yx3gx=x2This gives:ⅆⅆxyx3+ⅆⅆxx22. Apply thepowerrule to the termⅆⅆxx23. Apply thechainrule to the termyx3Recall the definition of thechainruleⅆⅆxfgx=f'gxⅆⅆxgxOutside functionfv=v3Inside functiongx=yxDerivative of outside functionⅆⅆvfv=3v2Apply compositionf'gx=3yx2Derivative of inside functionⅆⅆxgx=ⅆⅆxyxPut it all togetherⅆⅆxfgxⅆⅆxgx=This gives:The final result isDifferentiate the right sideⅆⅆx11. Apply theconstantrule to the termⅆⅆx10Rewriteⅆⅆxyxasy'and solve fory'=0Subtract2xfrom both sides=Simplify=Divide both sides by3y2=Simplifyy'=Solutiony'=2x3y2

(4)

Compatibility

• 

The Student:-Calculus1:-ImplicitDiffSolution command was introduced in Maple 2023.

• 

For more information on Maple 2023 changes, see Updates in Maple 2023.

See Also

implicitdiff

Student:-Basics

Student:-Basics:-SolveSteps

Student:-Calculus1

Student:-Calculus1:-ShowSolution