 Student[Calculus1] - Maple Programming Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Education : Student Packages : Calculus 1 : Single Stepping : Student/Calculus1/ShowSteps

Student[Calculus1]

 ShowSteps
 show the steps taken toward the solution of a problem or problems

 Calling Sequence ShowSteps(expr, showrules=tf)

Parameters

 expr - (optional) algebraic, algebraic equation, or all; select the problem(s) to show tf - (optional) truefalse; indicates whether or not to display the rules applied together with the results (default: true)

Description

 • The ShowSteps command displays the sequence of steps of the problem from its initial state to its current state.  The display is accomplished using calls to print; the value returned by ShowSteps is NULL.  Thus, the history variables, %, %%, and %%%, are not modified by this command.
 • This command can be applied interactively by using the DiffTutor, IntTutor, or LimitTutor.
 • If called with no arguments, the current problem is displayed. To designate a problem the current problem, create a new problem (see Rule or Hint) or use the GetProblem command.
 • If expr is a positive integer, the corresponding problem is displayed.
 • If expr is the keyword all, the current states of all problems from the current session are displayed.  Note: Problems that have been cleared by a call to Clear are not displayed.
 • If expr is the output from a previous call to Rule or GetProblem (with the internal option), or the left-hand side of such output, the current state of that problem is displayed.
 • The showrules option specifies whether or not to display the rules which have been applied at each step.
 • Unlike for the Show and ShowIncomplete commands, a subproblem label is not valid input to this command.
 • Maple returns an error if you attempt to display a problem that has been cleared by a call to the package routine Clear.
 • This command does not change which problem is designated the current problem.

Examples

 > with(Student[Calculus1]):
 > infolevel[Student[Calculus1]] := 1:
 > Rule[+](Diff(x^2+x, x));
 Creating problem #1
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{x}\right){=}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){+}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{x}$ (1)
 > Rule[^]((1));
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{x}\right){=}{2}{}{x}{+}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{x}$ (2)
 > Rule[^]((2));
 $\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{x}\right){=}{2}{}{x}{+}{1}$ (3)
 > Rule[+](Int(x^3+sin(x), x));
 Creating problem #2
 ${\int }\left({{x}}^{{3}}{+}{\mathrm{sin}}{}\left({x}\right)\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}{\int }{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{+}{\int }{\mathrm{sin}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (4)
 > Rule[^]((4));
 ${\int }\left({{x}}^{{3}}{+}{\mathrm{sin}}{}\left({x}\right)\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{=}\frac{{{x}}^{{4}}}{{4}}{+}{\int }{\mathrm{sin}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}$ (5)
 > ShowSteps();
 $\begin{array}{cccc}\multicolumn{4}{c}{{\int }\left({{x}}^{{3}}{+}{\mathrm{sin}}{}\left({x}\right)\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}}\\ \phantom{\rule[-0.0ex]{5.0em}{0.0ex}}& {\text{=}}& {\int }{{x}}^{{3}}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}{+}{\int }{\mathrm{sin}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\hfill & \phantom{\rule[-0.0ex]{1.0em}{0.0ex}}\left[{\mathrm{sum}}\right]\\ \phantom{\rule[-0.0ex]{5.0em}{0.0ex}}& {\text{=}}& \frac{{{x}}^{{4}}}{{4}}{+}{\int }{\mathrm{sin}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}{ⅆ}{x}\hfill & \phantom{\rule[-0.0ex]{1.0em}{0.0ex}}\left[{\mathrm{power}}\right]\end{array}$ (6)
 > ShowSteps(1);
 $\begin{array}{cccc}\multicolumn{4}{c}{\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}{+}{x}\right)}\\ \phantom{\rule[-0.0ex]{5.0em}{0.0ex}}& {\text{=}}& \frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}\left({{x}}^{{2}}\right){+}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{x}\hfill & \phantom{\rule[-0.0ex]{1.0em}{0.0ex}}\left[{\mathrm{sum}}\right]\\ \phantom{\rule[-0.0ex]{5.0em}{0.0ex}}& {\text{=}}& {2}{}{x}{+}\frac{{ⅆ}}{{ⅆ}{x}}\phantom{\rule[-0.0ex]{0.4em}{0.0ex}}{x}\hfill & \phantom{\rule[-0.0ex]{1.0em}{0.0ex}}\left[{\mathrm{power}}\right]\\ \phantom{\rule[-0.0ex]{5.0em}{0.0ex}}& {\text{=}}& {2}{}{x}{+}{1}\hfill & \phantom{\rule[-0.0ex]{1.0em}{0.0ex}}\left[{\mathrm{power}}\right]\end{array}$ (7)
 > Rule[*](Limit(x*exp(x), x=0, right));
 Creating problem #3
 $\underset{{x}{\to }{0}{+}}{{lim}}{}{x}{}{{ⅇ}}^{{x}}{=}\left(\underset{{x}{\to }{0}{+}}{{lim}}{}{x}\right){}\left(\underset{{x}{\to }{0}{+}}{{lim}}{}{{ⅇ}}^{{x}}\right)$ (8)
 > Clear(2);
 Problem #2 has been cleared

 See Also