 ScientificConstants - Maple Programming Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Science and Engineering : Scientific Constants : Functions : ScientificConstants/GetConstants

ScientificConstants

 GetConstants
 list the full names or symbols of all physical constants

 Calling Sequence GetConstants( 'names', 'derivedfrom'=Const )

Parameters

 'names' - (optional); specify that the full names be returned Const - (optional) symbol; return physical constants that are derived from Const

Description

 • The GetConstants() command returns an expression sequence containing the symbols of the physical constants in the ScientificConstants package.
 • The GetConstants( 'names' ) command returns an expression sequence containing the full names of the physical constants in the ScientificConstants package.
 • The GetConstants( 'derivedfrom'=Const ) command returns an expression sequence containing the symbols of the physical constants that are directly derived from the constant of name or symbol Const.
 • The GetConstants( 'names', 'derivedfrom'=Const ) command returns an expression sequence containing the full names of the physical constants that are directly derived from the constant of name or symbol Const.
 • The sequence of names or symbols is sorted alphabetically.

Examples

 > $\mathrm{with}\left(\mathrm{ScientificConstants}\right):$
 > $\mathrm{GetConstants}\left(\right)$
 ${\mathrm{A\left[r\right]\left(alpha\right)}}{,}{\mathrm{A\left[r\right]\left(d\right)}}{,}{\mathrm{A\left[r\right]\left(e\right)}}{,}{\mathrm{A\left[r\right]\left(h\right)}}{,}{\mathrm{A\left[r\right]\left(n\right)}}{,}{\mathrm{A\left[r\right]\left(p\right)}}{,}{{E}}_{{h}}{,}{F}{,}{G}{,}{{G}}_{{0}}{,}{{K}}_{{J}}{,}{{M}}_{{\mathrm{Earth}}}{,}{{M}}_{{\mathrm{Sun}}}{,}{{M}}_{{u}}{,}{{N}}_{{A}}{,}{{\mathrm{\Phi }}}_{{0}}{,}{R}{,}{{R}}_{{\mathrm{Earth}}}{,}{{R}}_{{K}}{,}{{R}}_{{\mathrm{\infty }}}{,}{{V}}_{{m}}{,}{{Z}}_{{0}}{,}{{a}}_{{0}}{,}{{a}}_{{e}}{,}{{a}}_{{\mathrm{\mu }}}{,}{\mathrm{\alpha }}{,}{b}{,}{c}{,}{{c}}_{{1}{,}{L}}{,}{{c}}_{{1}}{,}{{c}}_{{2}}{,}{e}{,}{{\mathrm{\epsilon }}}_{{0}}{,}{g}{,}{{g}}_{{e}}{,}{{g}}_{{\mathrm{\mu }}}{,}{{g}}_{{n}}{,}{{g}}_{{p}}{,}{{\mathrm{\gamma }}}_{{e}}{,}{{\mathrm{\gamma }}}_{{n}}{,}{{\mathrm{\gamma }}}_{{p}}{,}{{\mathrm{gamma_prime}}}_{{h}}{,}{{\mathrm{gamma_prime}}}_{{p}}{,}{h}{,}{\mathrm{hbar}}{,}{k}{,}{{l}}_{{P}}{,}{{\mathrm{\lambda }}}_{{C}{,}{\mathrm{\mu }}}{,}{{\mathrm{\lambda }}}_{{C}{,}{n}}{,}{{\mathrm{\lambda }}}_{{C}{,}{p}}{,}{{\mathrm{\lambda }}}_{{C}{,}{\mathrm{\tau }}}{,}{{\mathrm{\lambda }}}_{{C}}{,}{{m}}_{{P}}{,}{{m}}_{{\mathrm{\alpha }}}{,}{{m}}_{{d}}{,}{{m}}_{{e}}{,}{\mathrm{m\left[e\right]/m\left[mu\right]}}{,}{{m}}_{{h}}{,}{{m}}_{{\mathrm{\mu }}}{,}{{m}}_{{n}}{,}{{m}}_{{p}}{,}{{m}}_{{\mathrm{\tau }}}{,}{\mathrm{m\left[tau\right]c^2}}{,}{{m}}_{{u}}{,}{{\mathrm{\mu }}}_{{0}}{,}{{\mathrm{\mu }}}_{{B}}{,}{{\mathrm{\mu }}}_{{N}}{,}{{\mathrm{\mu }}}_{{d}}{,}{\mathrm{mu\left[d\right]/mu\left[e\right]}}{,}{{\mathrm{\mu }}}_{{e}}{,}{\mathrm{mu\left[e\right]/mu\left[p\right]}}{,}{\mathrm{mu\left[e\right]/mu_prime\left[p\right]}}{,}{{\mathrm{\mu }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\mu }}}_{{n}}{,}{\mathrm{mu\left[n\right]/mu_prime\left[p\right]}}{,}{{\mathrm{\mu }}}_{{p}}{,}{{\mathrm{mu_prime}}}_{{h}}{,}{\mathrm{mu_prime\left[h\right]/mu_prime\left[p\right]}}{,}{{\mathrm{mu_prime}}}_{{p}}{,}{{n}}_{{0}}{,}{{r}}_{{e}}{,}{\mathrm{\sigma }}{,}{{\mathrm{\sigma }}}_{{e}}{,}{{\mathrm{sigma_prime}}}_{{p}}{,}{{t}}_{{P}}$ (1)
 > $\mathrm{GetConstants}\left(\mathrm{names},\mathrm{derivedfrom}=G\right)$
 ${\mathrm{Planck_length}}{,}{\mathrm{Planck_mass}}{,}{\mathrm{Planck_time}}$ (2)