RegularChains - Maple Programming Help

Home : Support : Online Help : Mathematics : Factorization and Solving Equations : RegularChains : RegularChains/Separant

RegularChains

 Separant
 separant of a nonconstant polynomial

 Calling Sequence Separant(p, R)

Parameters

 R - polynomial ring p - polynomial of R

Description

 • The function call Separant(p,R) returns the separant of p with respect to the variable ordering of R, that is, the derivative of p with respect to its main variable.
 • It is assumed that p is nonconstant polynomial, and that the characteristic of R is zero.
 • This command is part of the RegularChains package, so it can be used in the form Separant(..) only after executing the command with(RegularChains). However, it can always be accessed through the long form of the command by using RegularChains[Separant](..).

Examples

 > with(RegularChains):
 > R := PolynomialRing([x, y, z]);
 ${R}{≔}{\mathrm{polynomial_ring}}$ (1)
 > p := (y+1)*x^3+(z+4)*x+3;
 ${p}{≔}\left({y}{+}{1}\right){}{{x}}^{{3}}{+}\left({z}{+}{4}\right){}{x}{+}{3}$ (2)
 > MainVariable(p, R);
 ${x}$ (3)
 > Separant(p, R);
 ${3}{}{{x}}^{{2}}{}{y}{+}{3}{}{{x}}^{{2}}{+}{z}{+}{4}$ (4)

Change the ordering of the variable.

 > R := PolynomialRing([z, y, x]);
 ${R}{≔}{\mathrm{polynomial_ring}}$ (5)
 > p := expand((y+1)*x^3+(z+4)*x+3);
 ${p}{≔}{{x}}^{{3}}{}{y}{+}{{x}}^{{3}}{+}{x}{}{z}{+}{4}{}{x}{+}{3}$ (6)
 > MainVariable(p, R);
 ${z}$ (7)
 > Separant(p, R);
 ${x}$ (8)